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Preface 

Animation has grown immensely over the years to become a mainstream art form 
in the hugely active industries of motion films, television, and advertising. A few 
basic rules and principles about how to harness the technology that gives the illusion 
of life to still drawings or objects and how to string together individual shots and 
scenes to tell a story or create a homogeneous, meaningful sequence or mood govern 
the fundamental aspects of creating an animation. 

Computer animation builds upon these fundamentals and uses computer - gener­
ated imagery (CGI) to weave magic on the screen. In spite of the fact that the tech­
nology employed in creating animation has advanced by leaps and bounds over the 
years, animation remains a very labourious process, involving a lot of skill and often 
many iterations, before the magic looks just right. This is the reason why computer 
animation remains a very active area for research. 

Animations where the character and the rendering camera both move are known 
as moving-camera character animations. The sheer number of parameters the ani­
mator has to control, in order to get the desired action shot from the intended camera 
position, is overwhelming. We present, in this book, view-dependent animation as a 
solution to the challenges encountered during the creation of moving-camera char­
acter animations. 

Creation of 3D character animations in which the viewpoint changes in every 
frame is a challenging problem because it demands a definite relation to be pre­
served between the character and the camera, in order to achieve clarity in stag­
ing. We present view-dependent animation as a solution to this arduous problem. In 
view-dependent animation, the character's pose depends on the view. The camera 
and character pose association, once specified by the animator, is maintained auto­
matically throughout such an animation. We design a general framework to create 
view-dependent animations. 

We formulate the concept of a view space of key views and associated key char­
acter poses. The view space representation captures all the information contained in 
a camera matrix, i.e., the position of the camera center, the direction of viewing, and 
the focal length of the camera, concisely and elegantly. Any camera path traced on 
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the envelope of this view space generates a view-dependent animation. This facil­
itates fast and easy exploration of the view space in terms of the view-dependent 
animations it can generate. 

We present a pipeline to create the view space from sketches and a base three-
dimensional (3D) mesh model of the character to be animated. Robust computer 
vision techniques are used to recover the camera from the sketches. We present two 
novel view-dependent algorithms, which allow us to embed a multilayered defor­
mation system into a view-dependent setting and integrate it with computer vision 
techniques. These algorithms match the pose of the 3D character to the sketched 
pose. The recovered camera and pose form the key views and key character poses 
and create a view space that can be used to generate a view-dependent animation by 
tracing paths on it. 

We then analyze the problem of authoring view-dependent animations from mul­
timodal inputs. We demonstrate that we can extract the relevant information about 
the cameras and character poses from a video sequence and create a view space. The 
view space serves as a common representation for all the information contained in 
different input types like sketches, video, and motion capture. Hence, it is used to in­
tegrate all these inputs together. We show that we can use this combined information 
to generate a view-dependent animation in real time as the animator traces a path on 
the view space. 

We introduce the concept of stylistic reuse and formulate it in terms of our frame­
work. We present three techniques for reusing camera-controlled pose variations to 
animate multiple view-dependent instances of the same character, a group of distinct 
characters, or the body parts of the same character. 

The book is addressed to a broad audience. It should be of great value to both 
practitioners and researchers in the area of computer animation. We also cover all 
the prior work relevant to the topics presented in this book so that there is no specific 
prerequisite. A basic familiarity with the area of computer animation and computer 
graphics should be sufficient. The book has a lot of figures to help understand all the 
concepts introduced in it. We have included an example animation for every facet of 
view-dependent character animation we have explored in this book. All the example 
animations are available at http://www.cse.iitd.ernet.in/~parag/vdabook. 

We would very much appreciate receiving comments and suggestions from the 
readers. 

Indian Institute of Technology Delhi, Parag Chaudhuri 
India Prem Kalra 

Subhashis Banerjee 
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Introduction 

The word animate literally means''to give life to!' Animation can be thought of as the 
process of making objects move and creating an illusion of life [124]. The animator 
is the person who directs and composes this movement. Since movements of objects 
and creatures in an animation are generally inspired by how they move in real life, 
animation is easy, in principle. But as the famous Disney animator Bill Tytla once 
said, "There is no particular mystery in animation... it's really very simple, and like 
anything that is simple, it is about the hardest thing in the world to do." 

Traditionally, animation began with each frame being painted by hand and then 
filmed. Over the course of many years animators perfected the ability to impart 
unique, endearing personalities to their characters. Many technical developments in­
cluding the introduction of colour and sound, the use of translucent eels (short for 
celluloid) in compositing multiple layers of drawings into a final image, and the Dis­
ney multiplane camera [124] helped animation mature into a rich and complex art 
form. 

Computer animation is the modern day avatar of animation where the computer 
is used to draw (or render) the moving images. With the advent of the computer, 
animation has gradually moved into the realm of three dimensions. The computer 
is primarily used as a tool to interact with the characters in 3D in order to define 
and control their movement. Today, animated characters span across a diverse spec­
trum ranging from cartoonlike humans {The Incredibles [15]) to fantasy characters 
(Shrek [1]) and from animals (Madagascar [35]) to photorealistic humans (Final 
Fantasy: The Spirits Within [114]). The need to animate such diverse characters has 
caused character animation to become an extensively researched area. 

Coordinating and presenting the character's movement in three dimensions to 
convey a specific idea to the audience, however, still remains an arduous challenge. 
The animator has to employ a lot of artistic and technical skill, and often a labourious 
iterative trial-and-error process to achieve a desired combination of the character's 
action and the point of view from which it is shown. Since in computer animation, 
values of many parameters that govern the appearance and the movement of the 
character, can be varied, the animator has an overwhelming number of things to 
control. It is especially difficult for the animator to generate the character's action 
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if the point of view (i.e., the rendering camera) is also moving. This book deals 
specifically with the problem of creating moving-camera character animations using 
a technique called view-dependent character animation. 

Creating moving-camera character animations in three dimensions is a multi-
faceted computer graphics and computer vision problem. It warrants a formal repre­
sentation of the moving camera and efficient algorithms to help author the multitude 
of character poses required for the animation. One also has to deal with issues per­
taining to camera, character pose interpolation, and visualization of the association 
between the two. Therefore, the solution to this problem, on one hand, has to be effi­
cient and elegant from the perspective of a computer scientist. On the other hand, the 
solution must make sense and be intuitive to use for the animator. We develop and 
demonstrate a framework in an endeavour to find such a solution. 

To set the context for developing a framework for moving-camera character an­
imation, it is important to understand the fundamental principles behind animation. 
This chapter discusses the animation pipeline and draws inspiration from well estab­
lished animation practices to introduce the idea of view-dependent character anima­
tion. 

1.1 Principles of Animation 

The primary aim of animation is to infuse life into characters. This required the early 
practitioners of animation to experiment with a plethora of methods for depicting 
movement on paper. In order to perfect this art, early animators who made sketches 
of moving human figures and animals, studied models in motion as well as live action 
film, playing certain actions over and over. The analysis of action became important 
to the development of animation. The animators continually searched for better ways 
to communicate the lessons they learned. Gradually, procedures were isolated and 
named, analyzed and perfected, and new artists were taught these practices as rules 
of the trade. These came to be known as the principles of animation [124]. These 
principles are 

1. Squash and stretch - Defining the rigidity and mass of an object by distorting its 
shape during an action. 

2. Timing - The spacing of actions in time to define the weight and size of objects, 
and the personality of characters. 

3. Anticipation - The preparation for an upcoming action so that the audience 
knows it (or something) is coming. 

4. Staging - The idea of presenting an action so that it is unmistakably clear and is 
not missed by the audience. 

5. Follow through and overlapping action - Guiding the termination of an action 
and establishing its relationship to the next action. Actions should flow into one 
another to make the entire scene flow together. 

6. Straight ahead versus pose-to-pose action - Two contrasting approaches to the 
creation of movement. Straight ahead refers to progressing from a starting point 
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and developing the motion as you go. Pose-to-pose refers to the approach of 
identifying key frames and then interpolating intermediate frames between them. 

7. Slow in and out - The spacing of the in-between frames to achieve subtlety of 
timing and movement. This is based on the observation that characters usually 
ease into and ease out of actions. 

8. Arcs - Since things in nature don't usually move in straight lines, this helps in 
defining the visual path of action for natural movement. 

9. Exaggeration - Accentuating the essence of an idea via design and action. 
10. Secondary action - The action of an object resulting from another action. These 

support the main action, possibly supplying physically based reactions to the 
previous action. 

11. Appeal - Creating a design or an action that the audience enjoys watching. 

These principles were adapted for computer animation by Lasseter [86]. Squash 
and stretch, timing, slow in and out, arcs, and secondary actions deal with how the 
physics of the character (like its weight, size, and speed) is presented in relation 
to its environment. Exaggeration, appeal, follow through, and overlapping action 
are the principles that address the design of an action sequence. Straight ahead and 
pose-to-pose are concerned with contrasting production techniques for animation. 
Anticipation and staging define how an action is presented to the audience, 

Animators developed the animation pipeline based on these principles. An ani­
mation develops as an amalgamation of ideas: the story, the characters, the continuity, 
and the relationships between scenes. The animation pipeline is a sequence of several 
steps that converts a story to a final animation. 

1.2 The Animation Pipeline 

First, a preliminary storyline is decided upon along with a script. Next, a storyboard 
that lays out the action scenes by sketching representative frames is developed. The 
story sketch shows character, attitude, expressions, type of action, as well as the se­
quence of events. In a preliminary storyboard, however, only the sequence of actions 
of the various characters are planned. The characters are not fully developed. The 
look and feel of a character is developed by sketching the character in various poses 
in a model sheet. The appearance of the character is documented from all directions 
and is used as a reference while actually animating the character. The exposure sheet 
records information for each frame such as sound track cues, camera moves, and 
compositing elements. Often the storyboard is transferred to film with the accompa­
nying sound track and a story reel or an animatic is created to get a feel of the visual 
dynamics of the animation. Once the storyboard is fixed, a detailed story is worked 
out. Keyframes (also known as extremes) are then identified and produced by master 
animators. Assistant animators are responsible for producing the frames between the 
keys; this is called in-betweening. Test shots, short sequences rendered in full colour, 
are used to test the rendering. The penciled frames are transferred to eels and painted. 
These eels are then composited together and filmed to get the final animation. 
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Computer animation production has borrowed most of the ideas from the con­
ventional animation pipeline. The storyboard still holds the same functional place in 
the animation process, as does the model sheet. However, after the planning phase, 
computer animation often makes the transition into 3D. The character models and the 
world which they inhabit have to be handcrafted. Controls are provided that allow 
movements of various parts of the character. Then the animation staging is done in 
3D, in which the camera positioning and movement for each shot is decided. This is 
followed by shading and lighting the animation and finally rendering the frames. As 
mentioned earlier, this sequence of steps is extremely tedious and time-consuming. 
It involves a lot of skill and a trial-and-error, iterative process wherein performing 
one task may require redoing one or more previously completed tasks. 

We are now ready to examine moving-camera character animations and the chal­
lenges the animator has to face while creating them. 

1.3 Moving-Camera Character Animation 

"%> ~\So 
Fig. 1.1. A preliminary storyboard (see top to bottom, left to right). 

We explain the creation of a moving-camera character animation using an exam­
ple, Hugo's High Jump. Hugo [17] is the name of the character in the animation. We 
start with a preliminary storyboard (see Fig. 1.1) for this animation. Once the basic 
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action has been planned and the character's look has been decided upon, we get the 
final or detailed story board, as shown in Fig. 1.2. 

Fig. 1.2. The final storyboard for Hugo's High Jump. 

Then the layout of the scenes is planned. Among other things, the layout also 
indicates the camera position for each frame. The layout is guided by the principle 
of staging and has to clearly portray where the viewer is supposed to be while ob­
serving the situation. Figure 1.3 is a time-lapse sketch for the animation sequence 
storyboarded in Figures 1.1 and 1.2. A time-lapse sketch shows the position of the 
character at different times in a single sketch. 

This animation has a moving camera, i.e., the viewpoint is changing in each 
frame. The layout helps plan these camera moves. Figure 1.4 shows how the framing 
of the shots change as the camera moves through frames 1, 9, 11, and 15. When 
the character is seen from the camera position for that particular frame number, the 
scene looks like the corresponding thumbnail on the storyboard. The movement of 
the camera center is drawn in red across all the frames in Fig. 1.5. It is clearly seen 
that in order to achieve clarity in staging the animator has to create a very definite 
relation between the pose of the character and the camera position. Every shot is 
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Fig. 1.3. A time-lapse sketch of Hugo's High Jump. 

Fig. 1.4. The moving-camera frame (see colour insert). 

drawn from the viewpoint of the audience, implicitly establishing a camera from 
which the action is understood clearly. 

Thus, the camera-character relationship plays a pivotal role from a very early 
stage in the animation creation process. This combination of the camera or the view 
and the character's pose or movement is maintained throughout the creation of the 
animation, even when the character is transferred from two dimensions to three di­
mensions. 

Translating the planned camera and character moves to 3D is an extremely diffi­
cult task. In this book we develop a framework to alleviate this problem. In order to 
illustrate the primary difficulty in creating moving-camera character animations, we 
evaluate the challenges involved in the process and suggest our alternative method­
ology. 
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Fig. 1.5. Path of the camera center across all frames (see colour insert). 

1.3.1 Challenges in creating moving-camera character animations 

The animation has to be created in three dimensions. A mesh model of the character 
is made using the character's model sheets for reference. Then the character's pos­
ture, in three dimensions, has to be visually matched to the sketches for every key 
frame. This may require manually deforming various parts of the character. More­
over, the view direction from which the character is seen needs to match with the 
viewpoint in the sketch. This requires considerable effort on part of the animator 
because the possible combinations of a camera and a character's pose are often over­
whelming. Next, to generate the animation, the character poses and the cameras for 
the in-between frames are obtained. In order to do this, if they are independently in­
terpolated, then there is no guarantee that the in-between character pose will have its 
corresponding viewing camera as intended by the animator (see Fig. 1.6). A number 
of iterations may be needed to get the appropriate match between all the character 
poses and the cameras required to generate the desired animation. 

A straightforward solution to this problem is to make the interpolation of the 
cameras depend on the interpolation of the poses in some manner, in order to pre­
serve the association between them. This can be achieved rather simply, by making 
one interpolation function dependent on the other. Naive approaches, however, fail to 
present any geometric representation for this dependence. Thus, they do not provide 
sufficient insight into the structure of such a dependence and cannot be used to exploit 
the camera and character pose association for versatile animation authoring. They 
may also have to be modified on a case-by-case basis. In an alternative approach, 
which is more intuitive and requires significantly less work, we find the camera and 
the character's posture, which together best match the sketch, using computer vision 
techniques. In this way the camera and the corresponding character pose get asso­
ciated when they are recovered together from the sketch. All the recovered cameras 
and their corresponding poses, taken together, form a space. This space provides a 
representation for all the moving-camera character animations that can be generated 
using the recovered cameras and poses. In particular, it explicitly embodies the as­
sociation between the two. Now, in order to generate the in-between frames for the 
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Sketch 
Keyframes 

Pose 
Character 
{Manually} 

INDEPENDENTRECOVERY 
Estimate 
Cameras 
{Manually} 

Independent interpolation 
of the camera and the pose 

Fig. 1.6. Approach 1: Separately reconstructing poses and cameras from sketches and then 
independently interpolating both to get the desired animation. 

animation we only have to interpolate the camera in this space (see Fig. 1.7). This 
interpolation automatically generates the corresponding character poses associated 
with the interpolated cameras. Moreover, the camera and character pose association 
is maintained throughout the animation. 

This approach of associating the camera and the character pose is fundamental 
to view-dependent animation. This motivates us to investigate the concept of view-
dependent character animation for creating moving-camera character animations. 
View-dependent animation explores the complex relationship between the camera 
and the character's actions and, hence, solves the staging problem in a limited sense. 
In view-dependent animation, the character's action depends on the view. An anima­
tor specifies the character pose with the desired view direction for certain key views. 
This is done on the basis of prior planning by the animator in the form of storyboards 
or key frame sketches. Then our framework generates a space using the key cameras 
and associated character poses specified by the animator. In order to generate the de­
sired animation, the animator has to trace the planned camera path in this space. The 
corresponding sequence of character poses is generated automatically in response to 
the camera movement. It is also possible to quickly examine this space and try out 
other variations of the camera path, which can generate other interesting animations. 

The principle of staging dictates that the character's action is to the camera so that 
the intent of the action is clear and not obscured. In general, the character's action is 
considered independent of the camera used to render the animation. View-dependent 
animation gives us a different perspective to the problem of camera-character asso-



1.4 Designing a Framework for View-Dependent Animation 9 

Sketch 
Keyframes 

*i , N ^ l 3 t I T \ Character^ 
J , * ^ P " « # - ; {Vision Guicted} 

* RECOVERY/ 
1 COUPLED^ 

Estimate I 
Cameras * 
{Vision Guided] 

~ ' Interpolate camera path only 
Poses are interpolated automatically 

Fig. 1.7. Approach 2 (view-dependent approach): Computer vision-based techniques allow 
coupled camera and pose recovery, and then interpolating only the camera generates the de­
sired animation. 

ciation. Our framework captures the relationship between the camera and the char­
acter pose based on the animator's specification of key views. It generates a space 
that characterizes the camera-character pose relationship desired by the animator, 
based on inputs from the animator. Once this space is created, the framework au­
tomatically maintains the camera-character pose correspondence. This allows the 
animator to concentrate solely on the aesthetic component of the desired animation. 
It, thus, translates the animator's intuition and her concept of staging and layout of 
moving-camera character animations into a tangible, explorable space of cameras 
and character poses. 

The view-dependent approach demands that we define a formal representation 
of the camera-character pose association. This representation should be practical to 
implement and use. It should obviously be conducive to the many ways in which 
a camera can be defined and interpolated. It should also encompass the character 
pose variations. These requirements span over a multitude of challenging computer 
graphics and computer vision issues. In the subsequent sections, we examine the 
scope of and the challenges we face in designing a framework for view-dependent 
animation, and how we solve them. 

1.4 Designing a Framework for View-Dependent Animation 

We build a framework that facilitates the creation of view-dependent character ani­
mations, i.e., the animation must respond automatically to changes in the rendering 
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viewpoint. In order to design a general framework that encapsulates the rich diversity 
offered by moving-camera animations, we are faced with a number of challenging 
problems, as described below: 

1. The framework must provide a sound basis for representing view-dependent an­
imations. 
• Since a view-dependent animation is a combination of views and associated 

character poses, the framework must have a way of encapsulating informa­
tion about viewpoints and their associated character poses. 

• It must also be able to generate new animations quickly, with minimal effort, 
after the initial set of views and poses have been specified. 

• It should be possible for an animator to add views and poses to an existing 
set, in order to enhance the animation. The framework must be able to handle 
such augmentations. 

2. The framework should be able to represent and exploit all the variations possible 
in defining a camera shot. Camera shots, in an animation, vary from wide pans 
to close ups, often as guided by cinematographic or theatrical principles [6]. The 
variations we want to capture are 
• Changes in the view direction 
• Changes in the distance of the camera center (or viewpoint) from the char­

acter 
• Changes in focal length of the camera, i.e., zoom and scaling 

3. The animator has to specify the desired animation using some mode of input to 
the framework. Traditionally, animators are familiar and trained to work with 
sketches. We have already seen an example of how sketches are used to plan an 
animation. The framework must have the following capabilities when dealing 
with sketches: 
• It must be able to recover information about the intended viewpoint from the 

sketch. 
• It must be able to assist the animator in posing the character using the 

sketched pose as a guide. 
• The framework should work with a large variety of character sketches. 

Sketches are not photo accurate. They are often rough representations of the 
character. 

4. Animators often use recorded video performances as references for key framing 
characters (i.e., specifying an animation using a sequence of key frames). Nu­
merous examples [ 115, 124], of the use of this technique for key framing humans 
and animals can be found. The framework should be able to use video input to 
create new view-dependent animations. 
• The framework must have a way to describe and interpret the information 

contained in a video in terms of the cameras in each frame and the corre­
sponding pose of the character. 

5. It may be desirable to mix many modalities while creating the animation such as 
keyframing, animation from reference video, and motion capture [115]. Suppose 
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the animator wants to replicate the camera movement of a master cinematogra-
pher from some existing movie (video) in the animation. She, however, wants 
to give a unique movement style to the character and, hence, wants to keyframe 
the movement separately, using sketches to plan the poses. Currently, this mix 
and match would require tremendous manual effort. We want our framework to 
adapt to such multimodal inputs, i.e., it should work even when the input method 
is a combination of these modes. 

6. One of the primary objectives of the framework is to aid the animator. In order 
to achieve this, the framework must adhere to the following principles: 
• It must, above all other considerations, allow sufficient control and freedom 

to the animator so that the desired animation can be generated. 
• The framework is not meant to replace the animation pipeline. Rather it is 

supposed to complement existing animation work flows by expediting the 
creation of complex moving-camera character animations. For this purpose, 
the generated view-dependent animation must blend in seamlessly with ani­
mations generated using more conventional techniques, like keyframing. 

This book presents a framework meeting all the challenges enumerated above. 
We introduce the concept of a view space defined by the key views and associated 
key character poses that completely captures all the information required to produce 
a view-dependent animation. The framework generates new animations in real time 
whenever the animator traces out a new camera path on the view space. We show 
that simple interpolation schemes allow the generation of in-between poses from key 
poses by just defining the intermediate camera positions and orientations. 

We present complete pipelines to create view-dependent animation from inputs 
sketches, videos, and a mix of both. The ability to map sketches and video into a 
common representation (i.e., the view space) allows us to mix and match these var­
ious input types to create unique view-dependent animations. The technique allows 
the mixing of other input modalities such as motion capture data as well. 

The framework allows the animator to seamlessly blend view-dependent anima­
tions with non view-dependent animations1 by simply matching the rendering cam­
eras for successive frames. 

Finally, we look at a very interesting application of view-dependent animation 
to reuse stylized animation. We present a formulation to synthesize an animation by 
reusing the view-dependent instances of a single character and a group of characters. 
We also show how one can animate different parts of a character using different 
view-dependent variations. 

1.5 Tour of the Book 

Animations where the character and the rendering camera both move are known as 
moving-camera character animations. The sheer number of parameters the anima-

1 Non view-dependent animations are those in which the character's pose does not explicitly 
depend on the camera. See Section 3.6.3 for more explanation. 
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tor has to control, in order to get the desired action shot from the intended camera 
position, is overwhelming. In this book we present view-dependent animation, as a 
solution to the challenges encountered during the creation of moving-camera char­
acter animations. 

This is our primary motivation for developing a framework for view-dependent 
animation. A quick overview of the various topics discussed in this book are as fol­
lows: 

• Chapter 2 presents the theoretical description of our framework. It presents the 
concept of a view space and how it encapsulates the camera-character pose rela­
tionship. Further, this chapter explains how the view space represents and uses all 
variations possible in defining the camera parameters. It also presents an example 
to illustrate these concepts. 

• All animators, regardless of whether they are creating 2D or 3D animations, start 
from model sheets and story boards. Sketches are perhaps the most common and 
familiar medium of input among animators. Chapter 3 presents our pipeline for 
creating view-dependent animations from sketches. It introduces two novel algo­
rithms for view-dependent posing and view-dependent mesh deformation. These 
allow the animator to create view-dependent models from sketches more intu­
itively and efficiently. 

• In Chapter 4 we present our technique for creating view-dependent animations 
from multimodal inputs. We first analyze the general problems in authoring 
view-dependent animations from multimodal inputs. We then present a solution 
to these problems by demonstrating how our framework can use video-based in­
put to generate view-dependent animations. We argue that this framework can 
handle multiple types of inputs and that they all share a common representation 
in terms of the view space. This allows the animator to mix and match these 
inputs as desired. We also present examples to demonstrate the use of multiple 
input modes in creating new and interesting animations. 

• The view-dependent animations generated by a camera path is unique. In Chap­
ter 5 we develop a framework for reusing the view-dependent variations in or­
der to synthesize novel animations. We present three techniques for reusing 
camera-controlled pose variations to animate multiple view-dependent instances 
of the same character, a group of distinct characters, or the body parts of the 
same character. We present animation examples for illustrating each of these 
techniques. 

• Chapter 6 presents a concise summary of the features of our framework for view-
dependent character animation. We conclude by presenting some directions for 
future work as a set of interesting problems, which can be solved by extending 
the ideas presented in this book. 



2 

A Framework for View-Dependent Animation 

In the previous chapter we have seen that an animation is generated as a consequence 
of some action captured from a desired camera. In a moving-camera character anima­
tion, the character's pose depicting an action or motion needs to be defined in tandem 
with the camera. We provide a framework that embodies the concept of camera and 
character pose association. 

2.1 Prior Work 

The essential idea behind the framework for view-dependent animation is that it pro­
vides a formal representation of the camera-character pose association. There have 
been attempts toward developing various representations of the camera as well as 
the character pose. However, these representations do not capture the association be­
tween the two. In this section, we present a brief discussion of these representations, 
in light of the objective we are trying to achieve. 

We first look at works that represent plausible character poses as an abstract space 
but control the character pose animation by some mechanism other than the camera. 

2.1.1 Character pose spaces for animation 

Lewis et al. [90] present a method to perform pose space deformation. Here, de­
formation is represented as a mapping from a pose space, defined by either an un­
derlying skeleton or a more abstract system of parameters, to displacements in the 
object's local coordinate frames. They use scattered data interpolation in the pose 
space to generate intermediate poses for the animation, using a radial basis function. 
This technique is suitable for shape interpolation and layered skeletal animation; 
however, it has no way of associating the pose space with the view. 

Ngo et al. [104] present a technique that models the space of all the key config­
urations (called key poses in this book) as a cross product of simplicial complexes. 
Then they define the mapping from this space to the image space and show that this 
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mapping is invertible. This allows the user to manipulate the image without under­
standing the structure of the configuration-space model. Their system applies simpli-
cial configuration modeling to 2D vector graphics. This idea is similar to the convex 
hull structure used in [109] (see Section 2.1.3), which is also a simplicial complex. 

In another recent work Igarashi et al. [67] present the technique of spatial 
keyframing. The key poses are defined at specific positions in a 3D space. The map­
ping from the 3D space, to the configuration space is defined by an interpolation 
function. The user controls a character by adjusting the position of a control cur­
sor in the 3D space and the pose of the character is given as a blend of nearby key 
poses. Thus, the user can create motion in real time that can then be recorded and 
interpreted as an animation sequence. Spatial keyframing associates key poses of the 
character with directions in 3D space. However, it does not associate the character 
pose with the view direction. 

Next, we examine works that create interesting animations using various rep­
resentations of the rendering camera. These methods vary the camera parameters, 
independent of the character pose, in order to generate the animation. 

2.1.2 Controlling camera variations to create animation 

Agrawala et al. [4] present a multiprojection rendering algorithm for creating multi-
projection images and animations. They develop an interactive interface for attaching 
local cameras to the scene geometry to alter the projection for each object inde­
pendently, thereby generating a multiprojection image. Singh [119] also presents a 
technique for constructing a nonlinear projection as a combination of multiple linear 
perspectives. The viewports of a number of exploratory linear perspective cameras 
are laid out on a common canvas on which the nonlinear projection of the scene is 
rendered. Each exploratory camera influences different regions in the scene based on 
local weight values. This approach neither integrates well into a conventional anima­
tion work flow nor has ways to control global scene coherence. 

Coleman and Singh [29] make one of Singh's [119] exploratory cameras a boss 
(or primary) camera; this camera represents the default linear perspective view used 
in the animation. All other exploratory (or secondary) cameras, when activated, de­
form objects such that when viewed from the primary camera, the objects will ap­
pear nonlinearly projected. They describe a framework for the interactive authoring 
of nonlinear projections, defined as a combination of scene constraints and a number 
of linear perspective cameras. These techniques used in the production of the short 
animation movie Ryan [85] demonstrate how geometric and rendering effects result­
ing from nonlinear projections can be seamlessly introduced into current production 
pipelines. This type of camera-based stylization can produce striking effects, which 
can be aesthetically harnessed by an artist to create interesting animations. 

In contrast to the above techniques, Yang et al. [142] extend traditional 2D image 
deformation techniques to 3D space and perform the deformation only on the 2D 
frames generated by the graphics pipeline. This requires no change in the traditional 
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graphics pipeline. They derive the deformation algorithms from 3D nonlinear per­
spective projections, which consider factors such as depth, view angle, and camera 
position. 

Other work involving camera or view direction control has chiefly focused on 
permitting a user to manipulate a virtual camera in a virtual environment as presented 
in [45, 46, 54]. Funge et al. [42] construct a cognitive model, which embodies the 
knowledge of the director and the cinematographer controlling the camera, using a 
cognitive modeling language. The camera acts like a cognitive agent and places itself 
based on the cues generated from the application rendering the scene and the axioms 
defined to govern its behaviour in the cognitive model. 

Although it is evident from the above discussion that many different representa­
tions of the character pose spaces and rendering cameras have been investigated in 
the past, there is very limited prior work on the idea of view-dependent animation, 
i.e., techniques that actually use the camera to influence the pose of the character. 
We now discuss techniques from the existing literature, which use the idea of view-
dependence of the character pose. 

2.1.3 View-dependent geometry 

The idea of dependence of the character's geometry on the view direction was first 
put forward by Rademacher [109] in his work on view-dependent geometry (VDG). 
He draws inspiration from the fact that artists catalogue the appearance of a character 
on a model sheet. Since these are hand-created images, they do not correspond to 
a precise physical space. They are drawn to achieve the best aesthetic effect and 
are not bound to geometric precision. As a result, these drawings typically contain 
many subtle artistic distortions, such as changes in scale and perspective, or more 
noticeable effects such as changes in the shape or location of features. VDG allows 
the animator to specify models in such a manner that their geometry can change with 
the viewpoint, hence capturing different looks of an object from different viewing 
directions. 

The inputs to the system are a 3D model of a character (the base model) and a 
set of drawings of the character from various viewpoints [see Fig. 2.1(a) and (b)]. 
First, the user manually aligns the base model with each drawing by rotating and 
translating the camera. This gives a best matching viewing direction for each sketch, 
which is known as a key viewpoint. The user then manually deforms the aligned base 
model by altering the positions of the vertices of the mesh model, in order to match it 
with the drawing. Note that the topology (vertex connectivity) of the model does not 
change during the deformation; only the vertex locations are altered. Also note that 
the drawings are not altered; only the base model is deformed. The deformed mesh 
model is called a key deformation. The process is shown in Fig. 2.2. 

A key viewpoint and a key deformation pair together constitute a view-dependent 
model. Such a view-dependent model is obtained for each sketch. These view-
dependent models are constructed a priori in the modeling phase. In order to generate 
the animation, we need to determine the pose of the 3D model associated with any 
given camera direction. 
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(a) Base 
Model 

(b) Reference Sketches 

Fig. 2.1. Inputs to the VDG system (images courtesy Rademacher [109]). 

Fig. 2.2. Construction of the view-dependent model. First align the base model to the sketch 
and establish a key viewpoint. Then deform the model to match the sketch. On the right we 
see the final key deformation (images courtesy Rademacher [109]). 

Given a view direction, the shape of the corresponding 3D model is determined 
as follows: The key viewpoints map to points on a sphere around the object, called 
the view sphere. This is so because this method considers only the viewing direction 
for the key and current viewpoints and not the distance from the cameras to the ob­
ject. A convex hull of these points is constructed. At rendering time, the face of the 
convex hull, which is intersected by a ray from the current camera to the sphere cen­
ter, is determined. The intersected triangle denotes the closest three key viewpoints 
surrounding the current camera. The current shape of the 3D model is generated as 
a barycentric blend of the key deformations associated with the closest three key 
viewpoints (see Fig. 2.3). Now, tracing any camera path on this view sphere gener­
ates the appropriate animation with view-dependent deformations. 

This method also supports creation of animated view-dependent models. In this 
case, the base model is nonrigidly animated, and a single set of key deformations is 
not sufficient. Such situations need a different set of key deformations for the key 
frames of the model's animation. This essentially results in a separate view sphere 
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Fig. 2.3. Viewpoints for each key deformation are shown as spheres around the model. To 
compute the shape as seen from the current viewpoint, find the nearest three key viewpoints 
and blend the corresponding key deformations (images courtesy Rademacher [109]). 

at each key frame. The animation is generated by blending the deformations on a 
per-frame basis, in response to the current viewpoint as the viewpoint moves from 
one view sphere to another. 

From Phong shading [107] to view-dependent texture mapping [37], graphics re­
search has shown that gaze direction is an important parameter in rendering objects. 
This work extends this progression by modifying the actual shape of an object de­
pending on where it is viewed from. In doing so, they directly address a problem in 
3D animation — the loss of view-specific distortions as an object moves from the 
artistic 2D world to the geometric 3D world. By employing view-dependent geom­
etry in animation, we can render 3D models that are truer in shape to their original 
2D counterparts. 

2.1.4 Observer-dependent deformations in illustrations 

Illustration has some visual characteristics that are very interesting although very 
difficult to obtain using a computer. While the simulation of various painting styles 
(see Section 5.1.1) has been successfully applied to computer-generated imagery, 
expressive capabilities have not been developed to the same extent. The deforma­
tions of objects and space is a major element in the expressiveness of illustration. 
Martin et al. [99] use hierarchical extended nonlinear transformations (HENLT) to 
produce observer-dependent deformations in illustrations, in order to capture its ex­
pressive capabilities. The HENLTs change with variation in the observer's position 
and orientation. They are then used to deform the object. So the object is seen differ­
ently from different directions. 

The techniques of Rademacher [109] and Martin et al. [99] are the only known 
direct applications of the view-dependent technique to animation, other than the one 
presented in this book. 
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In all the representations, except [99] and [109], of the camera and the charac­
ter pose discussed above, there is no direct one-to-one correspondence between the 
viewpoint and the pose of the character. Hence, they are not particularly suited to ad­
dress the problem of moving-camera character animations in general. We present a 
framework that embodies a general representation of view-dependent character ani­
mation. We use a view space (see Section 2.2), which is a space over camera parame­
ters. We associate a pose with every view direction in the view space, thus in essence 
creating an auxiliary character pose space. The framework allows the use of general 
forms of configuration-space models, as well as a simplicial complex, to represent 
the view space. We also use a radial basis interpolant to blend the selected key poses 
to generate the pose associated with the viewpoint in question (see Section 3.6.2). 

We show that the framework we present reduces to the VDG formulation as a 
special case (see Section 2.2). In addition, we also present techniques for automated 
recovery of cameras and creation of view-dependent models from sketches, videos, 
and hybrid inputs. In doing so we reduce the amount of manual intervention required 
in the creation of the view-dependent models, thus alleviating one the major limi­
tations of the VDG technique. Kate et al. [76] propose a method to automate some 
aspects of the view-dependent model creation. We present interactive techniques that 
allow semi automated creation of the view-dependent models. These are not only in­
tuitive but are also robust and offer the animator more control over the animation. 

We now present the details of the framework for view-dependent animation. In 
the following section we examine how the view space is formed from key views and 
associated character poses. 

2.2 The View Space 

We assume, for simplicity of explanation, that we are animating a single character 
and that the camera is looking toward the character (i.e., the character is in the field 
of view of the camera). We also assume that the view direction is a unit vector. 

At a given instant of time the character may be potentially viewed from a set 
of different viewpoints. The character may possibly have a different pose associated 
with each of these viewpoints (see Fig. 2.4). We consider such a set of viewpoints 
and associated character poses as one sample. We define a representation that enables 
aggregation of such samples as an ordered sequence. These sets of viewpoints and 
associated character poses sampled (or ordered) across time form a view space (see 
Fig. 2.5). We refer to this time (which orders the samples) as the the sampling time 
or sampling order. Every point on the surface envelope of this view space represents 
a viewpoint (and a unit view direction), v. If we do not consider the sampling order, 
then the view space is simply the space formed by the viewpoints and their associated 
character poses. Typically the animator provides only a finite number of samples to 
construct the view space. However, the resulting space is a continuous space. Since 
for every viewpoint there is a unique view direction, we use these terms interchange­
ably. We denote the pose of the character, associated with a view direction v, as mv. 
A character pose, in this book, is the resulting mesh model of the character having 
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Fig. 2.4. A character may be potentially viewed from a set of different viewpoints at a given 
instant of time. A different character pose may be associated with each viewpoint. 

undergone any change that may be rigid or nonrigid, i.e., it includes mesh deforma­
tions as well as changes in the mesh due to articulation of the embedded skeleton (see 
Section 3.3). We couple the character pose to the view direction. Hence, changing 
the view direction changes the pose of the character. 

A Space 

Envelope 

Time 

Fig. 2.5. A view space as an aggregation of all the sets of viewpoints. One character pose is 
shown for each set of viewpoints. 
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Fig. 2.6. Tracing a camera path on the envelope of the view space generates an animation. 

An animation is generated by tracing a path, P, on the envelope (see Fig. 2.6). A 
point p on this path consists of the view direction associated with the point on the 
envelope, v, and is indexed by time (run time of the animation) along that camera 
path, £, measured from the start of the camera path. Note that the run time of the 
animation should not be confused with the sampling time. We refer to points on a 
camera path P, as p = (v,f). The animation generated is the sequence of the poses 
mv_ associated to v on the path P viewed along the direction v. Every distinct camera 
path generates a distinct animation. This is the basic idea behind the framework. 

In order to create the view space, the animator provides a set of key viewpoints 
or key view directions and the associated key poses. Let vk represent a key viewpoint 
and mvk represent the associated key character pose. The animator can provide these 
in the form of a set of sketches, a video, or a mix of the two. In the Hugo's High 
Jump animation (first discussed in Chapter 1), the animator provides the sketches 
for the key frames (see Fig. 1.2). We use our framework to extract the key view 
directions and key poses from these sketches (we describe the process in Chapter 3). 
These form the view space on which the animation is generated. Figure 2.7 shows 
the sketches provided by the animator and the corresponding key views created using 
the framework. In the bottom row, we show the key poses as seen from the key view 
directions. Figure 2.8 shows the recovered camera centers (viewpoints) and view 
directions, shown from an independent camera. 

Note that for each view, the sphere centered at the look-at point (in this case the 
end of the unit length view direction vector) is the set of all possible view directions 
from which one can look toward that point. Hence, this sphere may be thought of as 
a view space generated by just one view. The complete view space is, therefore, the 
union of the view spaces generated by all the views (see Fig. 2.9). 

In order to generate an animation along a camera path, P(v, t), on the envelope 
of the view space, we need to generate the associated character pose, mv_, for every 
point p on P. To do this, for any view direction v, we determine the r-closest key 
viewpoints (closest in the metric defined on the envelope), vk.. An example of such a 
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Fig. 2.7. The top row shows the sketched poses given by the animator. The bottom row shows 
the reconstructed key views. 

Fig. 2.8. The small sphere is the recovered camera position, and the line shows the view 
direction vector. The larger sphere, centered at the look-at point, gives an idea of the relative 
positioning of the recovered camera centers (see colour insert). 

metric may be the geodesic distance between the viewpoints measured on the surface 
envelope. 

For clarity, henceforth we represent v* as v and vk. as v. The character pose mv_ is 
then given by 

mv_ = Jk w-vm-v . (2.1) 
V 

Thus, mv_ is a weighted blend of the corresponding ra^'s (i.e., the r-closest key view 
poses). The w^'s are the corresponding blending weights. The w^s vary inversely to 
the proximity of v to v [see Equation (3.14) in Section 3.6]. 

An example of a path, P(v, t), is shown in Fig. 2.9. Figure 2.10 shows the selec­
tion of the r-closest key viewpoint for a given position of the rendering camera on 
the path. 

The path shown in Fig. 2.9 is obtained by smoothly joining the key viewpoints. 
Some frames from the animation obtained from this path are shown in Fig. 2.11. 
Here we see that the generated animation matches the planned storyboard frames 
very closely and the path generates the animation originally intended by the anima­
tor. This complete process is very intuitive for the animator as she does not have to 
worry about the camera and the character separately, once the view space has been 
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Fig. 2.9. The left image shows the path traced on the envelope of the view space. The right 
image shows a close-up view of the path. The larger green sphere at the end of the path shows 
the position of the (current) camera when this snapshot was captured (see colour insert). 

Current Pose 
(blend of pose at #1 and #2) 

Current Viewpoint 

Pose at selected 
Key viewpoint #1 

Selected /"-closest 
Key viewpoints ( r= 2) 

Pose at selected 
Key viewpoint #2 

Fig. 2.10. The r-closest key viewpoints selected for a given position of the current viewpoint, 
and the corresponding character pose generated as a blend of the selected key poses. 

created. We show later that other paths on this view space also produce interest­
ing animations. Equation (2.1) computes mv_ as a linear blend of the r-closest key 
view poses. Note that in calculating mv, the topology (vertex connectivity) of the 
model does not change; only the vertex locations are altered as every vertex in m£ 

is a weighted blend of the corresponding vertices in key view poses. This does not, 
however, guarantee an in-between pose, at an interpolated viewpoint on the camera 
path, in which the mesh will not self-intersect. This happens when the key poses be­
ing interpolated are very different from each other. This is a common problem with 
all interpolation-based animation techniques. The solution to this problem, in our 
case, is to add another key pose at that interpolated viewpoint such that the key pose 
matches the correct or desired in-between pose. We assume coherence over a local 
neighbourhood around any viewpoint, both in terms of the view direction as well as 
the character pose, i.e., the pose specified by the animator for any viewpoint is sim­
ilar to the pose specified for any other viewpoint in its small neighbourhood. This 
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guarantees spatio temporal continuity in the generated animation, i.e., the animation 
will not have any sudden unwanted changes in the view or pose between successive 
frames. 

Fig. 2.11. The top row shows the planned storyboard. The bottom row shows the final rendered 
frames of the animation generated by the path shown in Fig. 2.9. 

We assume that we are looking toward the character. This does not mean that 
all the view directions are directed toward a particular point on the character's mesh 
model. It only means that the character is in the field of view of the camera. 

The view space for this example (shown in Fig. 2.9) is an instance of the general 
view space formulation. The view space can have other forms depending on the 
spatial location and sampling order of the sets of viewpoints used to construct it. The 
conditions under which they are generated are enumerated below: 

1. If all the view directions, corresponding to a set of viewpoints sampled at a given 
instant of time, intersect at a common point (i.e., they share a common look-at 
point), then the instantaneous view space is a single sphere (also called a view 
sphere) centered at the point of intersection. This is trivially true if there is only 
one view direction for some time instant. If this condition holds for all sampling 
time instants, then the view space is an aggregation of view spheres. The spatial 
location and sampling order of these sets of viewpoints (i.e., view spheres) gives 
rise to the following view space configurations: 
a. If there is only one set of viewpoints (i.e., there is only one sample), then the 

view space is a single view sphere [see Fig. 2.12(a)]. 
b. If there are multiple sets of viewpoints and each set is located at a differ­

ent point in space and sampled at a different time instant, then the view 
space is an aggregation of view spheres separated in both space and time 
[see Fig. 2.12(b)]. The view space shown in Fig. 2.9 is an example of such a 
case (with only one view direction for each time instant). 

c. If there are multiple sets of viewpoints at the same spatial location, sampled at 
different time instants, then the view space is an aggregation of view spheres 
separated only in time and not in space [see Fig. 2.12(c)]. 

2. If all the view directions, corresponding to a set of viewpoints sampled at a 
given time instant, do not intersect at a common point, then the instantaneous 
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Fig. 2.12. Possible view space configurations: (a) only one set of viewpoints; (b) multiple sets 
of viewpoints and each set is located at a different point in space and sampled at a different 
time instant; (c) multiple sets of viewpoints at the same spatial location, sampled at different 
time instants. 

view space is not a single sphere. It can be considered as a collection of spheres 
(one centered at each distinct look-at point). Then the complete view space is an 
aggregation of such instantaneous view spaces. The view space may have any of 
the three configurations analogous to the ones described above. 

In the work by Rademacher [109] the view sphere formed by view-dependent 
models is a special case of our view space. Here, a convex hull of the viewpoints 
is computed. This partitions the view space by imposing a triangulation on it (see 
Fig. 2.2). A novel view-dependent model for any new viewpoint is generated by a 
barycentric blend of the key deformations at the vertices of the triangle in which the 
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new viewpoint lies. This is clearly a special case of our novel view generation strat­
egy on the envelope. Here, r = 3-closest key viewpoints set up a local barycentric 
basis for the novel viewpoint. The new character pose associated with this viewpoint 
is computed as a weighted blend of the key poses at the selected key viewpoints, 
using the barycentric coordinates of the novel viewpoint as weights. The major lim­
itations of Rademacher's formulation are 

• It does not handle the distance of the viewpoint, which is crucial for incorporating 
zoom effects. 

• It cannot handle cases where all the camera view directions do not intersect at 
a single look-at point (the center of a view sphere), thereby limiting the method 
considerably. 

# Key Views 

• Current Viewpoint 

>2i Key Views Selected 
^ for Blending 

Fig. 2.13. Barycentric blending is biased toward choosing key viewpoints belonging to the 
same triangle. Radial blending does a better job in choosing the r-closest key viewpoints. 

In following sections we provide ways to deal with both of the above. Further, 
the barycentric blending policy may also sometimes choose key poses that are farther 
away if they belong to the same triangle as the current viewpoint (see Fig. 2.13). The 
barycentric blending, however, has the advantage of being very easy to compute. 
Hence, the framework allows the user complete freedom in choosing the r-closest 
key viewpoints and blending the corresponding key poses. We can also use barycen­
tric blending for this purpose, if required. 

2.3 Distance of Viewpoint 

In the previous discussion, we developed the framework considering only the view 
direction without the distance of the viewpoint. Now we add the component of dis­
tance to the framework, i.e., we want the character's pose to change as the distance of 
the viewpoint changes (with or without an accompanying change in view direction). 

We assume that a tuple list (dl
v,m

l
v) is associated with every view direction, v, 

forming the view space. Here, dv is the distance of viewing and the associated char­
acter pose is mv. The list is sorted on the distance field of each tuple. If the list has L 
elements, then 1 < / < L. So the m(,'s are the different poses of the character along a 

Barycentric Blending Radial Blending 

®. • ' ; 
* * 
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view direction at various distances d[. As we change the distance, d : dl
v
l < d < d®, 

along a view direction, v, the resulting character pose is a blend of the character poses 
mlJ and ra(,2 (see Fig. 2.14). 

Fig. 2.14. Change of character pose with change of distance of the current viewpoint along a 
view direction. 

Given a set of key viewpoints, v, and the associated tuple lists, (dl
v, m

l
v), we want 

to generate an animation for a camera path, P(v, d, f). The added parameter d_ is the 
distance of the viewpoint along the unit view direction v. The vector qv = dv gives 
the position of the current viewpoint (see Fig. 2.15). We determine the r-closest key 
viewpoints to v on the envelope as before. Now for every key viewpoint, z>, in the 
r-closest set of v, we project the vector q^ on v and find the length of the projected 
vector. The projected length d v • v is the distance d projected along v. Find dll and 
df from the tuple list of v such that dll < d v • v < df. It is always possible to find a 
fi-v such that 

dv-v = (l-j3-v)d2+fod*. (2.2) 

fa locates a point, q-v, along the corresponding v vector. The pose at each q-v is given 
by 

mq,=(l-/3-v)m'}+l3-vmf, (2.3) 
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where m1^ and m7-2 are the poses associated with dll and J ? . Then the pose corre­
sponding to the current viewpoint qv is given as a weighted blend of the pose at each 
q~v, as 

mqv = YJ Wqvmqv . (2-4) 

where wq.v are the weights used for the blending. The process is shown schematically 
in Fig. 2.15. If the tuple list of v is a singleton, then it means that only one pose is 
available along that view direction at some distance. In such a case, / = 1 and the 
associated mesh, i.e., the same mq.v is used for blending whenever v lies in a r-closest 
set. 

Fig. 2.15. Generating a new character pose for the current viewpoint from key viewpoints after 
incorporating distance. 

In order to illustrate this concept, we augment the view space, shown in Fig. 2.9, 
by adding two more poses for a view direction at different distances. The poses are 
reconstructed from sketches given by the animator, and the camera center is recov­
ered along with the distance of viewing (see Section 3.6.1). Two camera positions at 
different distances with their associated character poses are shown in Fig. 2.16. Now 
we trace another path for the rendering camera, specifying dp for all points on the 
path, and the required animation is generated as explained above. The path traced is 
shown in Fig. 2.17. This also illustrates that there exist other paths that are capable 
of generating interesting animations. The framework can generate animation in real 
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time as the animator traces out a path on the view space, thus making it possible for 
the animator to explore the view space very easily. 

Fig. 2.16. On the left the two camera positions are shown — note that they only differ in 
the distance from the character and not the view direction. On the right the corresponding 
character pose is shown, as seen from their associated cameras. 

Fig. 2.17. The new path with distance variations along with the envelope of the view space. 
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Thus, in this framework we incorporate both the view direction and the distance 
of a viewpoint. It is fairly simple to incorporate changes in the character pose with 
changes in focal length of the camera in a manner similar to the one used for dis­
tance of the viewpoint. Hence, we capture all the different variations possible while 
defining a camera in the framework. The view direction, viewpoint, and focal length 
of the camera are the parameters that constitute a camera matrix. Note that the view 
space is an abstract representation and can be easily used with the view parameters 
encoded in the form of a camera matrix. In Chapters. 3 and 4 we present techniques 
used to extract the various view parameters from the camera matrix, which are re­
covered from the given inputs. 

2.4 Other Extensions 

We can easily extend the framework to handle other commonly occurring scenarios 
during animation. We briefly examine two of them here: 

• In Section 2.2 we represent the view space as a collection of view directions 
independent of the sampling order. We can, however, retain the sampling order 
with the view directions and the character poses. This allows us to generate an­
imations where the action requires the view directions or character key poses to 
be considered in a particular order. 
Consider an example where the camera is moved back and forth along a single 
view direction while the character is completing a movement sequence. If the 
ordering information is not used, the character poses are sorted along the view 
direction based on the distance of the camera from the character. This will lead to 
poses from the forward camera movement being interleaved with poses from the 
backward movement. When the animation is generated by moving the camera 
along this view direction, the character pose will alternate between poses taken 
from the front and the back movement sequences. This can be easily avoided by 
using the ordering information. 

• We have only considered moving-camera animations until now. It is, however, 
possible to represent an animation with a stationary camera in the framework. 
The character poses are ordered by key frames and associated with a constant 
view direction. The animation is generated using normal keyframing. It can 
be seamlessly blended with a moving-camera animation by simply maintain­
ing the desired continuity among the cameras in successive frames. Hence, the 
framework can easily fit into a conventional animation work flow. We explain 
this in more detail in Section 3.6.3. 

2.5 Chapter Summary 

In this chapter, we first start by examined the prior work done toward developing 
different representations of character poses and rendering cameras. Animations are 
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created using abstract representations for a space of character poses, like simplicial 
complexes and spatial key framing. Different methods for representing the render­
ing camera have also been reported in the literature. These include multiprojection 
rendering, nonlinear projections, and cognitive controls for automatic cinematogra­
phy. We provide a single representation that embodies the camera and character pose 
association and allows us to generate animations from it. 

Next, we have discussed the related work, which are based on the idea of view 
dependence of the character pose. We start with the work on view-dependent geom­
etry. We see that the technique introduces the idea of a geometry that changes with 
the viewpoint. Some work has also been done on generating 2D illustrations contain­
ing observer-dependent deformations. We present a comprehensive, semiautomatic 
authoring solution for view-dependent animations that is easy to use and efficient. 

We have presented a theoretical framework that captures the rich diversity offered 
by view-dependent animations into a compact representation. Key viewpoints and as­
sociated key poses of the character provided by the animator form a view space. Any 
path traced on the envelope of this view space generates a view-dependent animation. 

We also show how to incorporate distance of the viewpoint into the view space. 
Hence, we can generate animations where the pose of the character changes in re­
sponse to changes in the distance of the viewpoint from the character. We can easily 
incorporate changes in the focal length of the camera, as a parameter to perform 
view-dependent animation, into the view space. 

Using the envelope to characterize a view space allows us to have a better un­
derstanding of the concept of staging actions while generating a view-dependent 
animation. In subsequent chapters we present the techniques used to implement this 
framework and to create view-dependent animations from multiple types of input 
like sketches and videos. 



3 

View-Dependent Animation from Sketches 

In Chapter 2, we introduced a framework for representing view-dependent anima­
tions. The view space (see Section 2.2) captures all the information necessary to 
generate a view-dependent animation. This view space, however, has to be physi­
cally realized from the inputs available to the animator. In this chapter we present 
the use of sketches to create such a view space and generate a view-dependent ani­
mation [25]. Before we explain this technique, we discuss the prior work that exists 
in the area of creating animation from sketches. 

3.1 Prior Work 

There have been numerous attempts toward designing systems that try to retain the 
expressivity and ease of creation of a 2D sketch while allowing generation of 3D an­
imations and character models from it. Sketches have been used for creating, posing, 
and animating 3D models of characters. We first look at the various attempts made 
toward creating character models from a sketch. 

3.1.1 Creating character models from sketches 

The SKETCH [143] system combines mouse gestures and simple geometric recog­
nition to create and modify 3D models. It uses a gesture grammar to create simple 
extrusion like primitives in orthogonal view. The Teddy [66] system presents tech­
niques for modeling from sketches, i.e., given a drawing, the system tries to recreate a 
geometric description of the scene. The system allows creating a surface by inflating 
regions defined by closed strokes. Strokes are inflated so that portions of the mesh 
are elevated based on their distance from the stroke's chordal axis. Teddy also allows 
users to create extrusions, pockets, and cuts to flexibly edit the models. The limitation 
of SKETCH and Teddy, however, is that the inferred geometry is often incorrect, and 
these errors become more and more apparent with changes in the viewpoint. In a later 
work, Igarashi and Hughes [65] present in SmoothTeddy, a technique to refine the 
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irregular polygonal meshes resulting from the original Teddy algorithms. A beautifi-
cation process, based on the Skin algorithm [98], generates near-equilateral triangles 
with a near-uniform distribution of vertices on the surface to hide irregularities in 
the original polygonal model. It is then refined to generate a dense polygonal mesh 
that smoothly interpolates the beautified mesh [see Fig. 3.1(a)]. Cherlin et al. [26] 
also present a sketch-based system for the interactive modeling of a variety of free-
form 3D objects using just a few strokes. It draws on conventional drawing methods 
and work flow to derive interaction idioms that should be familiar to illustrators. 
They develop algorithms for parametric surfaces using rotational and cross-sectional 
blending. The system allows the modeling of small, simple parts of a character. The 
user then directs the assembly of these parts using standard techniques like transla­
tion and rotation by clicking and dragging with the mouse. An example of a character 
created by such an assembly is shown in Fig. 3.1(b). 

(a) A bird designed using SmoothTeddy (im- (b) A wizard designed using system 
age courtesy Igarashi and Hughes [65]) developed by Cherlin et al. (image 

courtesy Cherlin et al. [26]) 

Fig. 3.1. Examples of character models made from sketches. 

Cohen et al. [28] present Harold, a system that allows an artist to draw on the 
image plane and thereby express a stylized 3D world. They make simplifying as­
sumptions about the underlying geometry. A billboard is used as the primitive ge­
ometric structure to model the scene. A billboard is typically a plane with an im­
age texture mapped onto it. This plane rotates about some point or axis to face the 
viewer as much as possible. When the user draws a stroke over a billboard, their sys­
tem simply projects the stroke onto the billboard and stores it; then, in order to dis­
play the billboard, they rerender each stroke, rotated appropriately. Objects in Harold 
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maintain the distinct stylistic appearance and subtleties imparted by the user, and its 
worlds, thus maintain their intended style and character as the viewpoint changes. 

Tolba et al. [127] present a drawing system for composing and rendering perspec­
tive scenes. They use projective 2D points to compose various renderings of a scene 
and support perspective drawing guides, 3D-like viewing and object manipulation, 
scene illumination and shading, and automatic shadow construction. The 2D repre­
sentation, however, has limited use for 3D animation. Sykora et al. [122] present an 
example-based framework for computer-assisted cartooning. They design new char­
acters and poses by combining fragments of original artwork. The user can simply 
select an interesting part in the original image and then adjust it in a new composition 
using a few control scribbles. The method works on images as input, and thus, the 
cartoons are generated in 2D. 

Another approach is to introduce 3D information into a 2D animation system 
by manual ordering of layers [96] or by underlying simplified 3D models like 
stick-figure skeletons [105]. Zenka and Slavik [130] present a system that when given 
a 2D sketch, creates a 3D polygon mesh describing the skeleton. It thus creates a hy­
brid sketch that can be rotated like a 3D object. The user can see the object from 
various angles without having to create a full 3D model or drawing the object again 
for each required view. 

3.1.2 Posing character models from sketches 

We want to pose the character's model in order to match it with the character's pose 
in the sketch. We do not want to create the model from the sketch. Early attempts at 
posing stick skeleton figures from sketches are made by Sabiston [113]. This system 
uses a simple reverse projection algorithm to reconstruct a skeleton pose from the 
sketch. The projection considered in this system is orthographic, and it resolves the 
depth ambiguity by user interaction. In another work, Hecker and Perlin [55], de­
velop a sketch-based animation system using a touch-sensitive tablet. Their system, 
however, relies completely on the artist to resolve any ambiguity. 

In a recent work, Davis et al. [36] provide a simple sketching interface for artic­
ulated figure animation. The user draws the skeleton on top of the 2D sketch. Then 
they reconstruct the various alternative poses of a 3D stick figure corresponding to 
the 2D pose, using techniques given by [87] and [123]. The user is allowed to pick the 
desired pose and perform a few corrections to it. This interface is supported by pose 
reconstruction and optimization methods specifically designed to work with impre­
cise hand-drawn figures. The system provides a simple, intuitive, and fast interface 
for creating rough animations that leverages the users existing ability to draw. The 
resulting keyframed sequence can be exported to commercial animation packages 
for interpolation and additional refinement. The skeleton posing technique used here 
is in spirit similar to the one used in our framework (see Section 3.5). 

In another contemporary work, Li et al. [91] present a method for stylizing ani­
mations through drawings. They allow an animator to modify frames in the rendered 
animation by redrawing the key features such as silhouette curves. These changes 
are then integrated into the animation. To perform this integration, they divide the 
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Fig. 3.2. (a) The motion captured movement is stiff and lacks personality, (b) example image 
was drawn by the animator to better express the character's personality, (c) motion editing 
matches the pose of the character is closer to the example image, (d) after layered warp, the 
mesh is warped to the example drawing's shape, (e) for a subsequent frame, the warping field 
is propagated (images courtesy Li et al. [91]). 

changes into those that can be made by altering the skeletal animation and those that 
must be made by altering the character's mesh geometry. To propagate mesh changes 
to other frames, they use a modified image-warping technique that takes into account 
the character's structure. In this paper, the skeletal deformations are obtained by man­
ually modifying a standard motion capture stream. It relies on the animator to find 
the frame in the original rendered animation that best matches the sketch and then 
creates a deformation field to warp the silhouette by matching the curves in 2D. The 
process is illustrated through an example in Fig. 3.2. 

3.1.3 Animating character models from sketches 

Some work has also been done on the creation of animation using sketch based in­
terfaces. In an early work, Librande [93] presents a system which learns an example 
space from a set of vector drawings. It can then produce the in-between frames by 
constructing an interpolation function on the example space. The animation gener­
ated by this system is in 2D. 

Thorne et al. [125] demonstrate motion doodles, a sketching interface for gener­
ating character motion. A continuous sequence of lines, arcs, and loops are parsed 
and mapped to a parameterized set of output motions that reflect the location and 
timing of the input character sketch (see Fig. 3.3). The system supports different 
types of motions in 2D and a subset of them in 3D. It is useful for fast creation and 
quick experimentation with various kinds of character motion. However, it cannot 
resolve ambiguities introduced by 3D mapping, and it is not suitable for animations 
that require unique or detailed motions. 

Mao et al. [97] present an interface for sketching out rough 3D stick figure an­
imation. The system allows the users to draw stick-figures with automatic figure 
proportion control. It utilizes figure perspective rendering, and it introduces the con­
cept of thickness contrast as a sketch gesture combined with some other constraints 
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An 
Fig. 3.3. A 2D motion sketch and the resulting animation (step, leap, front-flip, shuffle, hop) 
created using the motion doodles system (images courtesy Thorne et al. [125]). 

or assumptions for pose recovery. The resulting pose can be further corrected based 
on physical constraints of the human body. Once a series of 3D stick figure poses is 
obtained, the user can sketch out motion paths The resulting 3D animation can be 
exported to VRML. 

To summarize, we find that purely geometric approaches for creating 3D models 
from sketches like [66] and [143] suffer from a fundamental drawback — not all 
2D drawings of a character can actually be generated from one 3D model. Dynamic 
view-dependent models are an ideal solution for this problem. In fact, the variations 
present in 2D drawings that cannot be captured by a conventional geometric 3D 
model (like a triangular mesh model) is one of the prime motivations behind using a 
view-dependent model [109]. 

We want to use sketches of a character to extract camera or view parameters from 
it and to pose the 3D model of the character, in order to create a view space of the re­
covered views and their associated character poses. Existing works discussed above 
often work only with scaled orthographic cameras and have no explicit notion of a 
camera recovery. We recover the best full projective camera and view direction that 
matches the sketch (see Section 3.4). We show that this flexibility in the recovery of 
the camera allows for dramatic effects, such as close-up shots, in the resulting anima­
tion. In our case, the camera recovery technique requires minimal user interaction to 
specify correspondences. This technique also allows the user to correct or refine the 
automatically reconstructed poses. We, further, match the deformation of the char­
acter's mesh to the sketch, which cannot be recovered by matching the skeletal pose 
only. 

We have developed a pipeline to generate a view space from a set of sketches, 
which in turn allows us to generate a view-dependent animation. In the next section, 
we present an overview of this pipeline. 

3.2 Overview of the Pipeline 

Our technique for view-dependent animation generates a view space from a set of 
sketches using the pipeline we have developed (shown in Fig. 3.4). The animator 
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provides a set of sketches as input. We assume that the 3D base mesh model of the 
character is also given. The pipeline processes one sketch at a time. 
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Fig. 3.4. Schematic diagram depicting the pipeline to create a view space from a set of 
sketches. 
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(a) (b) (c) (d) (e) 

Fig. 3.5. Creating a view-dependent model from a sketch: (a) input sketch, (b) base mesh 
model, (c) recover a camera to orient the base mesh, (d) reconstruct the skeleton pose, and 
(e) deform the mesh to find the best possible match with the sketch. 

Figure 3.5 shows the various stages of the pipeline using an example sketch and a 
base mesh model as input. We first align the viewpoint with the intended view direc­
tion in the sketch [see Fig. 3.5(c)] by recovering the camera using computer vision 
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techniques. Then, we find the best match of the pose of the character1, when seen 
from the recovered view direction, with the sketch by moving the skeleton embed­
ded inside the mesh. The mesh model thus obtained is called a posed mesh model 
[see Fig. 3.5(d)]. The final stage deforms the mesh to match the silhouette of the 
model, as seen using the recovered camera, with the sketched character. The final 
mesh model is called a deformed mesh model [see Fig. 3.5(e)]. The final character 
pose, output at the last stage of the pipeline, together with the recovered camera is 
called the view-dependent model. Note that the camera recovery and the character 
pose recovery are semiautomatic processes and require some interactive inputs. This 
process is repeated for every sketch, and all the resulting view-dependent models 
together form the view space. 

We now describe this process in detail in the following sections. To bootstrap the 
process, we need an additional set of inputs, which are created as described in the 
next section. 

3.3 Inputs 

The primary inputs to the pipeline are a sketched pose [see Fig. 3.5(a)] provided by 
the animator and a base mesh model [see Fig. 3.5(b)]. The base mesh model is a 
3D mesh model of the character to be animated, made using any modeling software. 
We embed a skeleton into the mesh and enclose the mesh in a lattice to facilitate 
the automated character posing process (explained in Section 3.5). We describe the 
methods for creating these. 

3.3.1 Interactive skeleton and lattice construction 

We have implemented a simple interactive technique for skeleton construction in­
spired by Capell et al. [24]. It allows a skeleton, embedded in the mesh, to be con­
structed interactively in just a few minutes. The user creates a joint by clicking on 
the object with the mouse. If the ray through the clicked point (from the camera pro­
jection center) intersects the object at least twice, a joint is placed midway between 
the first two intersections. This positioning scheme produces joints that are centrally 
located inside the object. Two joints are selected to define a bone. When the whole 
skeleton has been created, the user selects a joint as the root, and a transformation 
hierarchy is created automatically. We give an example of a skeleton embedded in 
the mesh using this technique in Fig. 3.6(a). 

The skeleton need not correspond to an anatomically valid skeleton (in fact the 
object may not even have a skeleton, for example, an inanimate object like a guitar 
or a lamppost). The skeleton is a control mechanism provided to the animator to 
help define the pose of the character with ease. The user has complete flexibility and 
control over the way the skeleton is defined. 

1 See Section 2.2 for a definition of pose as used in this book. 
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(a) Skeleton embedded inside the (b) Lattice enclosing the mesh model 
mesh model 

Fig. 3.6. Example input for the pipeline. 

The mesh is also enclosed in a lattice. The lattice is made up of tetrahedral cells 
and encloses the base mesh model. The lattice is defined in a manner such that each 
lattice cell is associated with one skeleton bone. Thus the lattice construction is based 
on the way the underlying skeleton has been defined. We give an example of such a 
lattice in Fig. 3.6(b). Further details about the lattice and skeleton construction can 
be found in [70]. 

We now present the various steps of the pipeline in detail and explain how we 
create view-dependent animations from sketches. 

3.4 Recovering the Camera 

The first step in the pipeline (see Fig. 3.4) is camera recovery. In order to pose the 
character as drawn in the sketch, we need to first recover the intended view direction 
from the sketch. We describe the process for a single sketch in which we find a 
camera such that the projection of the character's model using the recovered camera 
is aligned to the sketched pose [see Fig. 3.5(c)]. This process is repeated for every 
sketch the animator provides. 

The animator usually provides the sketches on paper. Then they are scanned into 
the computer. The pipeline works on these scanned sketches. The user clicks corre­
spondences between the sketched pose and the skeleton joints. The skeleton joints are 
marked on the sketch. We can handle two broad categories of sketches. For sketches 
of the character, correspondences are very easy to specify as the user can locate the 
joints on the sketch easily and accurately [see Fig. 3.7(a)]. The second category of 
sketches that we can handle are rough mannequin sketches [see Fig. 3.7(b)]. Such 
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sketches are easier and faster to draw and are often used for rough pose planning 
during early stages of the animation (as is also shown in Fig. 1.1). If the bone pro­
portions of the mannequin are roughly the same as that of the character, then locating 
the skeleton joints on such a sketch is quite intuitive for the animator and correspon­
dences can be approximately specified very quickly. The camera recovery engine is 
robust enough to determine a feasible camera for the approximately placed joints and 
works equally well with both these categories of sketches. We demonstrate the use 
of mannequin sketches in the Olaf Reloaded animation, where the whole animation 
has been generated from such sketches. 

(a) A sketch of a character (b) A sketch of a mannequin 

Fig. 3.7. Possible input sketch types. 

The joints used during camera recovery have to be rigid relative to a change in 
pose i.e., the joints must not have moved from the base mesh model to the posed 
mesh model. The user needs to click the position of these rigid joints (see Fig. 3.8). 
The first point marked on the image must correspond to the root of the skeleton. This 
repositions the image coordinate system origin accordingly (as the root forms the 
origin of the skeleton's coordinate system). The minimum number of joints whose 
positions must be clicked on the sketch can vary from 3 to 6 depending on the type 
of the camera to be recovered. An orthographic camera has only five degrees of free­
dom and hence requires only three point correspondences (see Section A.3). A full 
projective camera has eleven degrees of freedom and hence, requires six point cor­
respondences if it is to be determined completely. Subsequently the two point lists 
(2D sketch points and 3D skeleton joints) are normalized. The full projective camera 
is computed using the Normalized Direct Linear Transformation Algorithm and the 
affine camera is computed using the Gold Standard Algorithm (for further details see 
Appendix A and [52]). These are numerically robust techniques and work well with 
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(a) A sketch with rigid joints marked (b) The corresponding joints marked 
on the skeleton 

Fig. 3.8. Marking of joint correspondences. 

hand-clicked correspondences. The weak perspective and orthographic cameras are 
recovered using techniques similar to those used for affine cameras. In most situa­
tions, we have worked with the full projective and affine cameras. The full projective 
camera is better suited for cases where close-ups of the characters are required (i.e., 
the distance of the camera from the character is comparable to the width of the char­
acter along the view direction). The affine and other cameras are better for cases 
where the camera is further away from the character (i.e., the distance of the camera 
from the character is considerably more than the width of the character along the 
view direction) and hence the perspective foreshortening effect is not pronounced. 
The full projective camera is of the form 

P = 
P\\ Pn P\3 Pu 
Pl\ P22 P23 P24 

P3\ P32 P33 P34 

(3.1) 

The camera thus estimated projects the clicked joints on the corresponding points on 
the sketch. If the camera recovered is P and the camera center is C then we must 
have 

P C = 0 . (3.2) 

So the camera center is recovered as the right null space of the camera matrix. For 
the full projective camera we get a finite camera center, but in case of the affine, 
weak perspective, and orthographic cameras the camera center is a point at infinity. 
In such cases, however, we are only interested in the camera view direction, i.e., 
the unit vector in the direction of the line joining the camera center with the look-at 
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point, and this is recoverable in all cases. The anatomy of the projective camera is 
given in Section A.2. 

Some care has to be taken while choosing the rigid joints. All the joints should 
not lie nearly on the same plane. If this is the case, then the solution returned by the 
algorithm is unique modulo a flip about the image plane. The principal axis vector is a 
vector along the principal axis of the camera, directed toward the front of the camera. 
This can be used to detect the condition when the camera recovered is actually behind 
the image plane. Such cases are easily corrected either by clicking a few out-of-plane 
joint correspondences and recomputing or by simply flipping the previously obtained 
solution. If the requisite number of rigid joints cannot be identified, vertices of the 
mesh, satisfying the rigidity requirement, can be used for point correspondences. 

When we look toward the 3D character using the recovered camera, it ap­
pears aligned with the sketched pose. We refer to this recovered viewpoint as 
a key viewpoint. Next we deform the mesh model and change its pose to match the 
sketch. 

3.5 Posing the Character 

In this section we describe the process of posing a character from a single sketch 
and obtaining a view-dependent model. We use a two-layered deformation engine 
for this purpose. In the first layer we match the skeletal pose of the character with the 
sketch, to obtain the posed mesh model, using a view-dependent posing algorithm 
(see Sections 3.5.1 and 3.5.2). In the second layer we match the silhouette of the 
mesh model of the character (in the recovered view) with the sketch, to obtain the 
deformed mesh model, using a view-dependent mesh deformation algorithm (see 
Sections 3.5.3 and 3.5.4). We look at both the layers one by one. 

3.5.1 Skeleton-based posing 

We first match the overall or gross level pose of the sketched character. This can be 
done by changing the articulation of the skeleton embedded in the mesh. 

Inverse kinematics 

In order to pose the skeleton we make use of inverse kinematics (IK). Inverse kine­
matics is most commonly used to interactively pose articulated characters. We want 
to automate the posing process as much as we can, but we also want to let the anima­
tor have interactive control. This way the animator can manually tweak the automati­
cally recovered poses if so desired. Other variants of IK, like style-based IK [49] and 
mesh-based IK [121] may be used to enhance performance of the posing algorithm 
we present. This, however, would require no change in the pipeline or the posing 
algorithm we present later (see Section 3.5.2). 

A skeleton is modeled as a collection of rigid objects (also called links or bones) 
connected by joints. The skeleton forms a rooted tree, with a special joint marked as 
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the root. We define a kinematic chain as any sequence of joints in this skeleton such 
that the sequence does not span across branches in the tree. We define the starting 
joint of this kinematic chain as the base joint for the chain and the far-end (distal) 
joint as the end-effector. Note that the end-effector can even be a joint that is not a 
leaf, as the chain can start and end anywhere as long as it does not span a branch. 
The base is fixed and cannot move, while the end-effector is free to move. 

Given a vector q of known joint variables, the forward kinematic problem of 
computing the position and orientation vector x of the end-effector is simple to solve, 
and has the form 

x = / ( q ) . (3.3) 

But if the goal is to place the end-effector at a specified position and orientation x, 
then determining the appropriate joint variable vector q to achieve the goal requires 
a solution to the inverse of Equation (3.3), 

q = r ](x). (3.4) 

Solving this inverse kinematic problem is not simple. The function / is nonlinear, 
and the inverse mapping of Equation (3.4) is not unique — there may be many q's 
for a given x. A natural approach is to linearize the problem about the current chain 
configuration. Then the relationship between the joint velocities and the velocity of 
the end-effector is 

x = 7(q)q . (3.5) 

If J = df/dq is the Jacobian matrix, then the inverse relationship becomes 

q = j\q)x. (3.6) 

Implementation 

We use an exponential map parametrization for joint rotations as given by [48]. Ev­
ery nonzero vector in R3 has a direction and magnitude. We can associate a rotation 
with each vector by specifying the direction as an axis of rotation and the magnitude 
as the amount of rotation. If we augment this relationship by associating the zero 
vector with the identity rotation, the relationship is continuous and is known as the 
exponential map (see Appendix B for more details on the exponential map). The ex­
ponential map is used as it does not require repeated normalization (like quaternions) 
to stay in a meaningful subspace, and it results in smaller dimension state vectors, 
which leads to faster performance. It is simple to compute the Jacobian at a node in 
a transformation hierarchy with respect to all the end-effectors below it in the hierar­
chy. This is used in the inner loop of the inverse kinematics solver and hence needs 
to be fairly fast. The exponential map turns out to be a very good choice for this pur­
pose, as it allows the inverse kinematics posing mechanism to respond at interactive 
rates. 

Once the Jacobian is obtained, we can solve for the change in the joint state vec­
tor. Here we find a least-squares solution using the pseudoinverse of the Jacobian. 
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We compute the pseudoinverse of the Jacobian using the Singular Value Decompo­
sition (see [47]). However, near a singularity, the problem becomes ill-conditioned, 
and the norm of resulting least-squares solution may tend to infinity. So it needs to 
be regularized, which we do using damped least-squares [126]. Once the pose of a 
chain has been computed, the state vector for the chain is updated appropriately and 
the change in joint transformations is propagated throughout the skeleton to pose the 
skeleton. A detailed description of the techniques mentioned above may be found 
in [13] and [136]. 

Inverse kinematics finds the best possible kinematic chain configuration to reach 
the specified goal by iteratively searching in a space of possible solutions. Chain 
configurations where the motion at any of the joints exceeds permissible limits are 
not valid solutions and are discarded to prune the solution search space. This is done 
using joint limits. Usually, joint limits are specified as constraints in IK. We have 
implemented spherical joint limits using joint reach cones. It is a natural representa­
tion of the range of allowed motions for an articulated body segment, borrowed from 
biomechanics. We have used the techniques of Wilhelms and Van Gelder [137] for 
specifying and enforcing joint limits in IK using reach cones. Reach cones can be 
specified interactively, and can be turned off if the animator so desires. Sometimes 
animated character's have range of motions that are exaggerated when compared 
with a normal human. Since reach cones give a visual representation of the joint 
limits being enforced, they are more easily specified than other joint constraint tech­
niques, even in unconventionally moving characters. Reach cones can be efficiently 
implemented and have no discernible effect on interactive speeds of the IK posing 
system. Reach cones are explained in greater detail in Appendix C. 

(a) (b) (c) 

Fig. 3.9. Blended skinning: (a) a part of the mesh with the embedded skeleton and the lattice, 
(b) deformation in the lattice as the skeleton articulation changes, (c) resulting deformation of 
the mesh due to (b). 

Inverse kinematics poses the skeleton. For posing the mesh model, the mesh 
is made to move with the skeleton using in essence a blended skinning [83, 84] 
approach. We use the lattice that encloses the mesh to do this. During construction, 
every cell of the lattice is associated to some skeleton bone. The cell vertices may be 
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shared among two or more cells. So the cell vertices have weights assigned to them 
that denote the degree of influence of the corresponding underlying skeleton bones on 
those vertices. Every lattice cell vertex also has its own coordinates recomputed in the 
local coordinate system of their associated bones. When the underlying bones move, 
the new position of the lattice cell vertex is computed using bones blending [77]. 
Every lattice cell is also associated with all the mesh vertices contained inside the 
tetrahedral lattice cell. Every mesh vertex is associated to at most one lattice cell. To 
move the mesh, the new positions of the mesh points contained in a lattice cell are 
calculated using their barycentric coordinates. This results in a smooth deformation 
of the mesh as the skeleton is moved (see Fig. 3.9). 

Using only IK, however, requires extensive user interaction to pose the mesh. We 
propose a novel view-dependent posing algorithm to pose the 3D mesh model of the 
character. 

3.5.2 View-dependent posing algorithm 

Interactive posing using IK though possible, requires extensive user intervention. 
The number of degrees of freedom that the user has to manipulate can seem over­
whelming. Thus we propose an algorithm that restricts IK to find solutions that are 
consistent with the recovered camera. 

Before the algorithm can start, the user needs to specify the joint correspondences 
on the sketch for all the joints that need to be moved during the posing and that 
were not marked during the camera recovery phase (see Section 3.4). Now we define 
the goal as the desired 3D position of the end-effector of the kinematic chain. The 
algorithm now proceeds as given in Algorithm 3.1. 

Require: The camera must be estimated before this algorithm can be run. 
Require: Correspondences for all the joints to be deformed must be marked. 

1 begin 
2 repeat 
3 Select a simple kinematic chain. 
4 Back project 2D end-effector position as the 3D goal using the 

recovered camera. 
5 Run IK to make the chain reach the goal. 
6 until the desired pose has been achieved 
7 end 

Algorithm 3.1: View-dependent posing algorithm. 

The user marks out a kinematic chain that needs to be deformed. For this purpose, 
the user only has to click on the joint names in a hierarchical graphical user interface 
(GUI) to identify the joints in the chain on both the sketch and the skeleton. The 
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position of the end-effector is back projected from the sketch into 3D space using the 
pseudoinverse of the recovered camera (see Fig. 3.10). This is done in the following 
manner. 

Back Projected Ray 

Point Nearest to Current End-Effector 
(Projected Goal Position) 

covered Camera 

Fig. 3.10. Back projecting the goal using the recovered camera. 

Let the end-effector position on the sketch be e = (xe,ye) and the recovered 
camera be P [P is of the form given in Equation (3.1)] with the camera center as C, 
then projecting e back using P+ (the pseudoinverse of P) gives us a 3D ray Re, 

R, = C + A (P+ • e ) , (3.7) 

where e is eT expressed in homogeneous coordinates, i.e., e = (xe,ye, 1)T. 
Now we find the point (X, Y, Z) on this ray that is closest to the current position 

of the end-effector joint in 3D. If the current end-effector position is given by E = 
(Xe, Ye, Ze), then the new position of the end-effector Enew is given by the solution of 
the following minimization: 

min = (X - Xef + (Y - Yef + (Z - Zef 
(X,Y,Z) 

subject to 

(Pll ~ P3\Xe) X + (pi2 - P32Xe) Y + (/?i3 - />33*e) Z + pU = /734 Xe , 

(j>2\ ~ P3\ye) X + (p22 ~ P32ye) Y + (/?23 ~ P 3 3 ^ ) Z + P24 = P34 ye • (3-8) 

Enew is the goal position in 3D. The constraints arise from the fact that P must project 
the point (X, Y,Z) to e = (xe,ye) on the sketch. So the constraints embody the camera 
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projection equation. Once we have projected the goal, the IK layer takes over and 
deforms the chain in 3D to make it reach the goal (see Fig. 3.10). Since IK is tied 
to the camera recovered and is guided by it to find a pose that satisfies the view-
dependent constraint, the projection of the posed mesh model matches (in terms of 
the skeletal pose) the sketch. 

The algorithm is numerically stable and works at interactive rates. Solving IK 
involves inverting the Jacobian using the Singular Value Decomposition and regu­
larizing the solution near singularities using damped least squares (as explained in 
Section 3.5.1). The minimization to enforce the projection constraints can be ef­
ficiently solved as a constrained optimization by using Lagrange multipliers. The 
performance of the algorithm is dependent on the accuracy of the camera recovery 
phase. The algorithm works better with the joint reach cones turned on, as then the 
solution is better constrained. 

The overall configuration of the chain achieved by the algorithm may not be the 
one desired by the animator. Often the easiest way around this is to consider short 
chains (i.e., chains with up to 3 segments). In all the experiments we performed, 
the algorithm always found the desired chain configuration for short chains. Short 
chains may result in more number of chains being selected, even then the number 
of joints to be clicked are about 2 to 10. This is still easier than posing directly in 
three dimensions. The algorithm works best if the small chains starting from a fixed 
root are successively posed as we move out toward the end-effector. This strategy of 
chain selection can be programmed, making the algorithm completely automatic. 

The algorithm always selects the point on the ray that is closest to the current 
end-effector position as the new goal. The reason for assuming this as the new goal 
position is that the algorithm chooses a point that causes least movement or change 
from the existing end-effector position. If there is a cost or energy associated with 
the distance moved by the kinematic chain, then the algorithm makes a choice that 
minimizes this energy. The pose reconstruction is unambiguous as it always finds 
the best possible pose, which minimizes the reprojection error from the recovered 
camera. If, however, the above process does not pose the chain to the animator's 
satisfaction then the animator can still correct the pose of the chain by tweaking the 
bone positions interactively using IK. 

This process is repeated for every chain till the desired pose of the complete 
skeleton is achieved. In the current implementation the posing process poses a single 
chain at a time. This can be easily extended to simultaneous solution of multiple 
chains reaching for multiple goals using techniques given in [ 12]. The lattice deforms 
the mesh whenever IK repositions a chain. Thus at the end of the posing phase we 
have the posed mesh model [see Fig. 3.5(d)]. 

Further, we can pose elements of the character that may not be there in the sketch 
using the interactive posing facility available in the IK layer. For example, in one of 
our results the character has a tail, but the input sketches are mannequin sketches and 
do not have a tail in them; so the tail is interactively posed by the user. 

The posed mesh models become the key deformations associated with the recov­
ered cameras that are the key viewpoints, and these constitute the view-dependent 
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models. It may be argued that these are just posed and not deformed, but the geom­
etry of the mesh model has changed from the base mesh model (due to the lattice 
layer moving the mesh along with the skeleton), and animating using these mod­
els produces a view-dependent animation where the geometry responds to changes 
in view. We illustrate this with an animation sequence in the results. If, however, 
the mesh is further deformed using a view-dependent mesh deformation algorithm 
in order to make it match better with the sketched character, we get an improved 
view-dependent model. 

3.5.3 Mesh deformations 

Animators frequently tend to exaggerate or stylize deformations of animated charac­
ters (e.g., a character's head develops a large bump when he gets hit by a hammer). 
Such deformations are not the result of articulation and hence cannot be reproduced 
by just using IK. In order to model such deformations, the mesh is deformed using 
the technique of direct free-form deformation (DFFD) [64, 80]. We choose DFFD 
to perform the deformation because it is simple and efficient. Since it works with 
any general control lattice, and we have already defined a lattice enclosing the mesh, 
it is the most convenient choice. The lattice is made of tetrahedral cells. Since the 
tetrahedron is a simplex, it allows a linear barycentric basis. Using this linear pa­
rameterization for defining local coordinates inside the tetrahedron makes the DFFD 
computations extremely fast and efficient. 

The free-form deformation (FFD) method deforms an object by first assigning 
to each of its points within the deformation lattice a set of local coordinates. Once 
the control points are moved, the new location of an object point is determined by 
a weighted sum of the control points. The weights are functions of the coordinates 
originally assigned to the point. Hence, a positional change of the control points 
changes the location of the points. Direct free-form deformation involves moving a 
set of selected points of the object to some target locations by determining the change 
in control point positions that will effect this change. Let q be the vector of points to 
be moved, and S be a vector of all the control points, then 

q = BS , (3.9) 

where B is a matrix of all the blending functions. If qnew is the vector with the new 
positions of the points, then qnew = B(S + AS) or 

Aq = BAS, (3.10) 

where AS is the change in the position of the control points and Aq is the change 
in position of the object point. We are given Aq (as the difference between qnew and 
q), and we want to find AS that satisfies Equation (3.10). This can be solved by 
computing the pseudoinverse of B. 

We use the lattice enclosing the character mesh (see Section 3.3) as a control 
lattice for DFFD. Our implementation allows the user to deform the mesh interac­
tively by direct manipulation with mouse clicks. The user can move groups of points 
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as well as individual mesh points. For deformation of the mesh consistent with the 
view, we have a view-dependent mesh deformation algorithm that couples the pro­
cess of deforming the mesh with the recovered camera. We describe this algorithm 
below. 

3.5.4 View-dependent mesh deformation algorithm 

Manually moving mesh vertices to match them with the sketch is a very cumbersome 
process. Since such a matching is guided by only visual inspection, it is error prone 
and inaccurate. Hence, we propose an algorithm to restrict the solution space of 
DFFD by the projection constraints imposed by the recovered camera. This allows 
us to closely match the contours of the 3D mesh with the curves of the sketched 
character when the mesh is viewed using the recovered camera. 

For the algorithm, the user first needs to mark correspondences by clicking points 
on the sketch and the posed mesh model. These points are the inputs to the algorithm. 
We call these points the input points. These points usually belong to the silhouette 
curve of the sketch as we want to match the silhouette of the sketch with the mesh. 
The points in 3D where these input points are to be moved are called the target points. 
Algorithm 3.2 describes the process. The back projection and target point selection 

Require: The camera must be estimated before this algorithm can be run. 
Require: Correspondences for all the input points to be moved must be 

marked. 

I begin 
2 repeat 
3 The 2D points on the sketch are projected back in 3D space as a ray, 

using the recovered camera. 
4 The points on these rays that are closest to their corresponding points 

in 3D are chosen as the target points. 
5 The set of input points and target points are passed on to the DFFD 

layer, which moves the input points to the target points. 
6 until the desired deformation is achieved 
7 end 

Algorithm 3.2: View-dependent mesh deformation algorithm. 

is done in the same manner as described in Section 3.5.2 for the skeleton-based 
posing. In this case, e = (xe,ye) become the 2D points on the sketch. P is again 
the recovered camera with the camera center as C. If the input 3D point is E = 
(Xe, Ye,Ze)9 the target point (X, y,Z) can be found by solving Equation (3.8) (see 
Fig. 3.11). The constraints ensure that P projects the computed target point (X, Y,Z) 
to e on the sketch. When the input mesh points move to the target points, the DFFD 
algorithm recalculates the position of the affected lattice cell vertices keeping the 
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Back Projected Ray 

Deformed Mesh 

Point Closest to the Input Point on the Ray 
(Target Point) 

Original Mesh Input Point 

Sketch 

Point Clicked on the Sketch 

Recovered Camera 

Fig. 3.11. Back projecting the input mesh point using the recovered camera and deforming the 
mesh. 

basis parameterization of the input mesh points constant. The rest of mesh vertices 
in the affected lattice cells suitably deform when the lattice cell vertices move. 

The algorithm responds at interactive rates and is numerically stable. Direct free-
form deformation computations involve the computation of the pseudoinverse of the 
matrix of blending functions. This is done using the Singular Value Decomposition. 
It can be proved that the pseudoinverse gives the least-squares solution to the DFFD 
problem (see Section 3.5.3). It is important that the input and target points are chosen 
consistently, i.e., the points in the neighbourhood of a point should move almost 
similarly to ensure smooth variation of the surface of the mesh. It is also important 
that points that should not be moved by the algorithm should be explicitly clamped 
down, by specifying the target points for those points as the input points themselves. 
If, however, the algorithm does not deform the mesh to the user's satisfaction, the 
user can interactively refine the mesh deformation by manually adjusting the mesh 
points. 

Note that if the lattice is considerably coarse as compared to the mesh, its effect 
is not localized to a very small area. A modified version of the algorithm uses a radial 
decay function (this feature can be turned on/off by the the user) that localizes the 
effect of the moved mesh vertices to smaller regions around them rather than to all the 
vertices inside the affected lattice cell. In such a case the movement of a mesh vertex 
is damped by a weight w, which is calculated as follows: Let rmax be the maximum 
radius of influence of the radial decay function (this is a user-defined quantity). Let 
mv be the input mesh vertex being moved and mV be any other mesh vertex, then a 
weight w is calculated as 
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(3.11) 

where d is the Euclidean distance between mv and mv'. A point mv' may get assigned 
multiple weights when more than one mesh point is moved. In such a case only 
the maximum of all those weights is finally retained. Hence, if a mesh point lies 
outside the radial region of influence of the input mesh point, it does not move at 
all. The barycentric parameterization of the mesh vertices changes when the radial 
decay function is used and has to be recomputed every time, but because it is a 
linear parameterization, recalculation is not costly. The layering of the deformation 
engine allows the user to look at and manipulate suitably the skeletal and nonskeletal 
deformation separately without causing unwanted artifacts in the mesh (as is also 
observed in [91], who also match the silhouette but use curve matching in 2D to 
do it). Though an adaptive hierarchical lattice, which can be subdivided finely in 
areas where more control over the movement of vertices is required, will be a better 
solution for the localized deformation problem than the radial decay function, we use 
the decay function because it is easier to implement. The radial decay function is used 
only to localize the effect of the DFFD and not for the actual deformations themselves 
as the least-squares solution computed by the DFFD is much more efficient. Also, 
the DFFD provides higher level control over groups of vertices due to the presence 
of the lattice, while manipulating individual vertex deformations using a radial decay 
function is much more cumbersome. 

Alternatives to DFFD, like the work on sketching mesh deformations by Kho and 
Garland [78], can be used as the deformation model in the framework. It uses curves 
sketched on the mesh model to directly deform the mesh. This will also improve the 
performance of the algorithm as it will give finer level control over the movement 
of the mesh vertices. The view-dependent deformation algorithm, however, does not 
change. 

The mesh obtained after this stage is the deformed mesh model [see Fig. 3.5(e)]. 
This process of camera recovery, posing, and mesh deformation is repeated for each 
of the character sketches, and we get a camera and a character pose pair correspond­
ing to each sketch. We refer to these cameras as key views and the associated charac­
ter poses as key poses. These are used for creating the view-dependent animation. It 
is worthwhile to note here that computer vision-guided character posing and defor­
mation require significantly less work than is required in doing the same manually. 

3.6 Animating the Character 

After we recover the view-dependent model for every sketch provided by the ani­
mator, we construct the view space. We illustrate the technique with the help of an 
example. 
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Fig. 3.12. Hugo sketched from six directions, namely front, back, top, bottom, left, and right. 
The second row shows the corresponding animation key frames generated by the system. 
Notice the marked perspective foreshortening in the top and bottom view sketches and how 
the effect is correctly reproduced by the recovered camera. In the last sketch Hugo's right 
leg undergoes a marked mesh deformation, which cannot just be obtained by skeletal pose 
recovery. This is as per the corresponding sketched view. 

3.6.1 Constructing the view space 

An animator provided the set of sketches shown in the top row of Fig. 3.12. the 
framework recovered the poses along with their corresponding cameras, as shown in 
the bottom row of Fig. 3.12. In this example the ability of the framework to recover 
and use the full projective camera is seen clearly in the top and bottom views where 
the projective foreshortening effect is very pronounced. The 3 x 4 projective camera 
matrix, P, is decomposable as K[R|t], where K is a 3 x 3 matrix containing the focal 
length of the camera, R is a 3 x 3 submatrix controlling the view direction, and t is a 
3 x 1 submatrix governing the viewpoint distance (see Section A.l). Hence, we can 
recover all this information from the camera matrix. We recover the view direction v 
as 

v = det(M)m3 , (3.12) 

where M is the first 3 x 3 submatrix of P and m3 is the third row of M. det(M) is 
the determinant of M. The camera center C can be estimated as the right null space 
of P by solving PC = 0. The look-at point, 1, is given by 

\ = C + Av. (3.13) 

We normalize these view directions to get the key view directions, v9 for the view 
space. For this example, all the look-at points coincide; hence the view space is 
reduced to a sphere (see Section 2.2). In Fig. 3.13, the large sphere is the view space, 
the smaller red spheres represent the camera centers, and the red lines represent the 
view directions. 

3.6.2 Generating the animation 

To generate the animation we need to compute the novel views for all points p on the 
camera trajectory P(v, t). We first find the r-closest key viewpoints by using a radial 
distance based selection, i.e., a key viewpoint v lies in the r-closest set of a point p if 
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Fig. 3.13. The view space — the smaller blue and red spheres are the key viewpoints (see 
colour insert). 

d(v, v) < (thresh- Here, d(v, v) is the distance between v and v measured on the enve­
lope. The distance measurement is dependent on the coordinate system in which the 
view space is defined. It can be made independent of scale if the coordinate system 
is normalized. dthresh is the distance threshold decided by the animator depending 
on the density and position of the views available and the intended animation. For 
dense views and if dthresh is small, the distance on the envelope can be approximated 
by a chordal distance. Once the r-closest set, i.e., the z>'s, have been determined, we 
compute the blending weights as follows: 

where v are the selected r-closest key viewpoints and a > 1.0. Suitable values of a 
generally vary from 2 to 4, again depending on the density and position of key views. 
The blending weights are normalized such that X ^ = 1. For numerical stability, 
when any d(v, v) < e, the corresponding w-v is clamped to 1 and all others are set to 
0. Here e is a very small number like 1 x 10"6. This ensures that the pose matches the 
key pose exactly when the current viewpoint is at a key viewpoint. It also assumes 
that the key viewpoints are more than e distance apart so that there is no ambiguity 
in selecting a key viewpoint due to the clamping. This is a valid assumption because 
6 is very small. The resulting blended pose at p is calculated using Equation (2.1). 
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Figure 3.13 shows such a blending using the radial blending function. The blue 
spheres are the selected r-closest key views (the £>'s) for the given current viewpoint 
(shown as the green sphere). The current pose is a blend of the corresponding se­
lected key poses. Note that the weighting function used here is an instance of the 
more general framework. Other functions can also be used to select the r-closest 
poses and for calculating the blending weights. It is possible to give the animator a 
choice between various weighting and blending functions. The value of a is also user 
controlled. 

A smooth camera path guarantees a smooth animation because the blending func­
tion used to compute the pose at any point on the path ensures that the in-between 
poses are a smooth blend between the selected key poses. The blending function is 
continuous over its domain. We also assume that the pose specified by the animator 
for any key viewpoint is similar to the pose specified for any other key viewpoint in 
its small neighbourhood. Thus, the animation does not have any sudden unintended 
changes in the view or pose between successive frames. 

Dense or uniform sampling of views in the view space is not a requirement of the 
method. The animator is free to populate the view space as she wishes, in order to 
get the desired animation. A pose can be added to an existing view space. We have 
an example of such an augmentation in Section 2.3, where we add two new poses 
to the view space created for the Hugo's High Jump animation to get an animation 
changing with changes in distance of the viewpoint. 

3.6.3 Blending view-dependent animation with non-view-dependent animation 

Let us examine what we mean by non-view-dependent animation. Any animation 
where the character's action is not explicitly dependent on the camera movement 
is non-view-dependent. Such animations may even have stationary cameras. Hence, 
any animation generated using normal keyframing will fall into this category. In 
order to fit into a conventional animation pipeline, the framework has to be able to 
blend a view-dependent animation sequence with a non-view-dependent animation 
sequence seamlessly, in terms of the camera shot. 

We know the cameras for the last few frames of the first sequence. One idea is 
to maintain the same camera in the second sequence if it is a static camera sequence. 
If the camera in the second sequence is positioned differently, then we transition to­
ward the camera in the second sequence gradually, interpolating the camera positions 
across the seam using a spline curve. 

We use the Hugo's High Jump animation as an example in Chapter 2 to explain 
the view space creation. In this animation, we have generated the actual jump as 
a view-dependent animation (that part is generated from the poses given in Fig­
ures 2.7 and 2.16). Hugo's run-up before the jump, however, is generated using 
simple keyframed animation, and it blends in seamlessly with the view-dependent 
portion. Here the camera simply translates with the character during the run-up and 
transitions into the view-dependent camera when Hugo starts the jump. 



54 3 View-Dependent Animation from Sketches 

3.7 Discussion of Other Results 

We have generated various view-dependent animations using sketches as input, using 
techniques we have so far discussed. Here we present the salient features of the 
framework demonstrated by each of these animation results. 

We have already discussed the Hugo's Antics animation sequence (the input 
sketches and corresponding rendered key frames are shown in Fig. 3.12). This se­
quence is a concept demonstration. The character used in the sequence is called 
Hugo. Some of the sketches have a marked perspective foreshortening effect, and 
hence camera recovery warrants the use of a full projective camera recovery. Further, 
in each of the sketches Hugo is posed and deformed differently. While some of these 
deformations can be obtained directly by reconstructing the skeleton pose, at other 
places the mesh needs to be deformed to match the sketched character more accu­
rately. The animation sequence has the camera going around Hugo, cycling through 
each of the key viewpoints with brief pauses at the top and bottom key viewpoints 
to highlight the correctness of the full projective camera recovery. Hugo deforms 
accordingly in response to the camera. When the camera is to the right of Hugo, 
his right leg undergoes a marked mesh deformation that cannot be obtained by just 
skeletal pose recovery. This is as per the corresponding sketched view. Other poses 
have less mesh deformations. 

Fig. 3.14. Sketches and corresponding rendered key frames from the Olaf Reloaded animation. 

The Olaf Reloaded clip is inspired by the opening freeze frame - camera rotate 
shot from the movie Matrix [131], filmed on the character called Trinity. The char­
acter used in the animation is the Olaf, the Ogre. As the camera goes round Olaf, 
he replicates the midair kick made famous by the movie. This sequence has been 
generated using mannequin sketches. This demonstrates that view-dependent anima­
tion is indeed possible using such sketches and the skeletal pose reconstructed by the 
system. The camera model used in this sequence is affine. We stress here that all the 
changes in Olaf's pose is in response to the camera movement, and it should not be 
confused with a rigid rotation of the character. This animation required six sketches 
for the view-dependent sequence (see Fig. 3.14). 



3.7 Discussion of Other Results 55 

Fig. 3.15. Sketches and corresponding rendered keyframes from the Ballet of the Hand ani­
mation. 

The longest animation clip we have generated using this technique is titled Ballet 
of the Hand. The character used is a cartoon hand (and hence the four fingers). Affine 
cameras are used in this animation. This clip has three view-dependent sequences. 
The first has the hand trying to do a jump very characteristic of a ballet sequence. 
Notice that the legs (of the character) do not stretch far enough to execute a perfect 
ballet jump the first time, so the character retries the jump. The retry attempt of the 
character has been generated by changing the camera angle and replaying the same 
sequence again. It can be clearly seen that during the jump the legs stretch further 
apart this time, and hence we clearly demonstrate deformation changing in response 
to a changing camera. As a final demonstration of the elegance of the view-dependent 
animation technique the character executes a pirouette (a spin move in ballet), and it 
can be seen as the camera also rotates independently of the character; the character 
clearly deforms while rotating, in response to the camera movement. All the three 
view-dependent sequences together required less than 10 sketches as input. We give 
some of the sketches and the corresponding rendered keyframes from the animation 
in Fig. 3.15. 

The Hugo's High Jump animation sequence we discussed in Chapter 2 is also 
generated from sketches. The various sketches used for inputs are shown in Fig. 2.7, 
while the recovered cameras are shown in Fig. 2.8. The generated view space with 
a sample camera path is shown in Fig. 2.9. The complete animation starts with 
keyframed animation sequence where Hugo runs in and prepares to jump. In this part 
of the animation the camera merely translates with the character. As Hugo begins his 
jump, the camera begins to go around him and the sequence seamlessly blends into a 
view-dependent animation sequence. As Hugo completes his high jump and falls, the 
sequence again blends back into a keyframed sequence. We also demonstrate a vari­
ation of this animation by tracing a different path on the view space. On this path the 
distance of the viewpoint from the character changes, and the animation responds to 
these changes as explained in Section 2.3. This also illustrates that there exist other 
paths on the view space (other than the path planned prior to the creation of the view 
space) that are capable of generating interesting animations. 
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3.8 Chapter Summary 

In this chapter, we have presented a complete pipeline to create a view-dependent an­
imation from sketches. A review of the prior work shows that sketch-based modeling 
has been a popular technique for creating animations. However, there have been rel­
atively few attempts toward posing characters from sketches. These techniques use 
simple camera projection models like orthographic cameras and rely on the user to 
disambiguate between possible 3D character poses. Research has also been done to 
deform a partly posed character mesh so that it exactly matches a sketched pose. 

The pipeline to create a view space from sketches takes as input a set of sketches 
and a base 3D mesh model of the character. We use robust computer vision algo­
rithms to recover the camera that best aligns the 3D character to the view direction 
in the sketch. Then we determine the pose of the 3D character that best matches the 
sketched character pose when seen through the recovered camera. 

We present two novel view-dependent algorithms to ascertain the pose of the 3D 
character. The view-dependent posing algorithm poses the character by moving the 
skeleton embedded inside the character (using IK) such that the pose matches the 
sketched pose when viewed through the recovered camera. The view-dependent de­
formation algorithm moves the vertices of the 3D mesh (using DFFD) in order to en­
sure that the silhouette curves of the 3D mesh project onto the corresponding curves 
of the sketch when projected using the recovered camera. In this way we are able to 
embed a multilayered deformation system (IK and DFFD) into a view-dependent set­
ting by using them in conjunction with a recovered camera estimated with computer 
vision techniques. 

Each recovered camera and character pose pair forms a view-dependent model. 
We then show how the view space is formed from these view-dependent models 
recovered from the sketches. The animation is generated by tracing a path on the 
envelope of the view space. We also present many example animations of varying 
complexity, generated using this pipeline, to validate the claims about the effective­
ness of the techniques presented in this book. 

We have chosen to use IK and DFFD and have modified and integrated them into 
the framework. We, however, would like to point out that other viable alternatives 
to these techniques exist in recent literature (see Sections 3.5.1 and 3.5.4). These 
can be suitably adapted into forms that can replace IK and DFFD without affecting 
the view-dependent posing and deformation algorithms. The implementation of the 
pipeline that we present in this book should be considered as a concept demonstra­
tion. 

In the next chapter we explore how we can use a combination of multimodal 
inputs like video and sketches to enhance the scope of the framework and create 
more interesting view-dependent animations. 



4 

View-Dependent Animation from Multimodal Inputs 

In this chapter we present techniques for generating view-dependent animations from 
multimodal inputs. We have already seen in Chapter 2 the theoretical framework used 
to represent view-dependent animations. In the preceding chapter, we presented the 
complete pipeline to generate moving-camera character animations from sketches. 
Animators, however, use many different kinds of inputs to create an animation, such 
as video and motion capture. We wish to harness the various input methods, either 
separately or in combination, to generate better view-dependent animations. 

First we examine and address the challenges associated with using multimodal 
inputs for creating moving-camera character animations. We start from video-based 
animation. Video is different from a set of sketches primarily because there is a tem­
poral component to the video. We study the use of video for creating animation in 
the existing literature. We then explain how the information contained in a video 
is mapped to a view space to generate a view-dependent animation. We present the 
pipeline developed for this purpose. We then generalize this solution for video to in­
corporate other forms of input. We show that the framework can handle any combina­
tion of the various input methods and it offers considerable freedom to the animator 
in creating moving-camera character animations. 

4.1 Challenges in Multimodal Authoring of Animation 

Authoring moving-camera character animations from multimodal inputs is a chal­
lenging task. The main problems we face while working with multimodal inputs are: 

1. The primary components of a view-dependent animation are the key cameras and 
the key character poses associated with them. In order to create view-dependent 
animations, we must be able to extract information about these components from 
the various types of inputs we want to handle. 
Different types of inputs like sketches, video, and motion capture have differ­
ent characteristics and, hence, require different techniques for extracting these 
components. A sketch is a single snapshot of the character's pose from some 
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camera, and in Chapter 3 we presented the techniques to infer this informa­
tion from sketches. A video is a sequence of snapshots taken over a period of 
time. Since the camera and the character pose may change continuously through­
out the video, these have to be tracked across time. Both camera and character 
tracking are very challenging problems. Motion capture is yet another type of in­
put, which makes use of multiple, static, calibrated cameras. The character data 
output from motion capture systems is usually in the form of time-varying joint 
state vectors. As a first step, therefore, we have to develop suitable techniques to 
extract the required information from these inputs, to create the view-dependent 
animation. 

2. Next, we wish to utilize all the information, extracted from these inputs to create 
the desired animation. In order to do this we need to combine the information in 
some meaningful manner. The challenge here is that the camera and character 
pose information extracted from various sources may have different representa­
tions. For example, information extracted from a sketch may have the camera 
represented as a camera matrix and the character pose recovered as a skeleton. 
In a video, however, the camera position information is obtained as a stream of 
continuously tracked rotations and translations. The character in a video may be 
tracked in many ways and the tracked information may include contour posi­
tions, blob positions, or 2D skeleton configurations. Similarly, motion capture 
systems may have other representations for the captured motion information. It 
is extremely tedious and confusing to work with numerous, different abstractions 
and formats. We must be able to interpret them and map them to a common rep­
resentation. This will allow us to combine them effectively and create the desired 
animation easily. 

3. The number of cameras and character poses extracted from the various inputs can 
turn out to be quite overwhelming, even after they are all mapped to a common 
representation. Therefore, we must provide the animator with an interface to 
explore them. The animator can create the view-dependent animation easily and 
efficiently if provided with a tool for interactive visualization of this collection 
of cameras and character poses and see the resulting animation in real time. 

In subsequent sections, we present solutions to all these problems. We first ex­
amine the prior work done on creating animations from video and then present a 
technique for generating view-dependent animations from video. 

4.2 Prior Work 

The use of video for generating animations has been extensively researched. In spite 
of many years of active research, capturing motion from video remains a very chal­
lenging problem. As we have already mentioned, a video is different from a sketch 
because it is a sequence of snapshots over time. Since we want to use video to create 
view-dependent animations, we must be able to extract the character pose and the 
camera parameters from it. Thus, we look at existing work in this area under the two 
broad categories of character and camera tracking in video. 
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4.2.1 Character tracking in video 

Character tracking is more commonly known as motion capture, because tracking 
the character is equivalent to recording of the motion of the character using different 
sensors. Even after substantial progress in video-based motion capture techniques, 
animation from video remains a hard problem. Gleicher and Ferrier [44] describe 
why the demands of animation pose a difficult challenge for video-based motion cap­
ture techniques. Animation is extremely sensitive to small jitters and wobbles which 
are always present due to noisy capture and inaccurate computations. Moreover, the 
importance of high frequencies in capturing subtle nuances of a motion implies that 
naive filtering is not a viable tool for noise removal at video sampling rates. Also, 
the unpredictability and unusual motions that need to be captured limit the strength 
of the models that can be applied. 

In subsequent sections, we examine the various techniques that are used to track 
human and other characters in video for generating animation. 

Tracking human characters in video 

Animating humans from video performances is one of the primary objectives of 
video-based motion capture systems. These systems use computer vision techniques 
to analyze the video data and interpret the motion of the character from it. Moeslund 
and Granum [102] present a comprehensive study of computer vision-based human 
motion capture literature from the past two decades. A general computer vision-
based motion capture system can be functionally structured into four stages. Before a 
system is ready to process data, it needs to be initialized', i.e., an appropriate model of 
the subject has to be established. Next, the motion of the subject is tracked. Tracking 
includes segmenting the subject from the background and finding correspondences 
between segments in consecutive frames. The pose of the subject's body often needs 
to be estimated. Many times this itself may be the output of the system, for example, 
to control an avatar (the graphical representation of a character) in a virtual environ­
ment the body pose information is required. High-level knowledge, like a kinematic 
model, is typically used in pose estimation. Depending on the requirements of the 
animation, the pose information may be further processed in order to recognize the 
actions performed by the subject. 

Model initialization has two aspects: to find the initial pose of a subject and to 
define the model representing the subject. In some systems this problem is reduced 
either by assuming the subject's initial pose to be known as a special start pose [27] 
or by having the operator of the system specify it [141]. Perales and Torres [106] 
specify it for every frame, while Zheng and Suezaki [144] manually fit the pose at 
some key frames and then use correlation to interpolate between frames. 

The primary purpose of tracking is to extract specific image information, either 
low level, such as edges [61], or high level, such as hands and head [139] positions 
of the subject. Independent of the context, three common aspects of tracking can 
be identified. First, the tracking algorithm needs to separate the moving character 
from the rest of the image, i.e., the figure-ground problem. When the background 
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and the camera are relatively static, temporal data like background subtraction [5] 
or flow [20, 141] can be used for this purpose. Spatial-data-based techniques use 
thresholding [69] or statistical approaches like deformable templates [16] or hidden 
Markov models [110]. Second, these segmented images are transformed into another 
representation to reduce the amount of information or to suit a particular algorithm. 
The third aspect defines how the subject should be tracked from frame to frame. The 
correspondence analysis is often supported by prediction. A model of velocity and 
acceleration or more advanced models of movements such as walking [111] may be 
used. A commonly used method for prediction is the Kalman filter [73], suitable for 
unimodal distributions. The CONDENSATION algorithm [68] is capable of tracking 
multiple hypotheses, i.e., support multimodal distributions, and has been shown to 
be a powerful alternative to the Kalman filter. A prediction-correction framework 
may sometimes fail for complex cases. Zheng and Takagi [145] provide a graphical 
interface to manually correct predicted model tracks. 

Fig. 4.1. Tracking results on Muybrige's Woman Walking | 1()3|. The reconstructed pose is 
projected on the input frames (images courtesy Bregler and Malik |23|). 

Pose estimation is the process of identifying how the character's body and/or in­
dividual limbs are configured in a given scene (see Fig. 4.1). Often, explicit kinematic 
and dynamic models of an articulated body are used for this purpose. The concrete 
representation of the character's model is a state space where each axis represents a 
degree of freedom of a joint in the model. A pose of the subject may be expressed as 
a point in the state space as opposed to many points in the 2D image space. The idea 
is to predict the pose of the model corresponding to the next image. The predicted 
model is then synthesized to a certain abstraction level for comparison with the im­
age data. Constraints are introduced to prune the state space, either by partitioning 
the state space into legal and illegal regions, as in [101] or by defining them as forces 
acting on an unconstrained state space, as in [140]. Another approach to reduce the 
number of possible model poses is to assume a known motion pattern, especially 
cyclic motion, such as walking and running [111]. The various abstraction levels 
used for comparing image data and synthesized data are edges [60], silhouettes [75], 
contours [71,72], sticks [87], joints [50], blobs [140], depth [108], texture [117], and 
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motion [23]. The recognition aspect of motion capture can be seen as post processing 
and is not particularly relevant to the problem at hand. 

Kakadiaris and Metaxas [72] present a system for animating customized virtual 
humans using motion parameters estimated from multiview image sequences. First, a 
subject is asked to perform a set of motions to acquire the anthropometric dimensions 
of his/her arms. The system is initialized manually by matching the initial configu­
ration of the model to the starting frame, and then a Kalman filter is used to predict 
the state of the model in subsequent frames. Based on the predicted position of the 
model, the system synthesizes the appearance of the model as it would have been 
seen by the different cameras. For every model the projection of the vertices of the 
model to the image plane of each camera is computed, and a new state for the model 
is estimated that minimizes these discrepancies. Collomosse et al. [30] generate a 
camera-motion-compensated version of the sequence, thereby ensuring that camera 
motion does not influence the observed trajectories. They track features over the 
sequence and analyze the occlusion of features during tracking to determine their 
relative depth ordering. 

Tracking other characters in video 

Animation deals with a wide spectrum of characters (see Chapter 1). Techniques for 
tracking based on assumptions specific to human motion or the human body may not 
work for other than human characters. Efforts have also been made to capture the 
expressive movement styles usually found in traditional animation (see Fig. 4.2). 

Fig. 4.2. Motion of a jumping character retargeted to a 3D model (images courtesy Bre-
gleretal. [22]). 

Bregler et al. [22] describe a method to capture the motion from a cartoon ani­
mation. They parameterize the motion with a combination of affine transformations 
and key weight vectors. The affine transformations encode the global translation, ro­
tation, scaling, and shear factors. Key shape deformations, which are defined relative 
to a set of key shapes, are used to capture finer deformations. Shapes between the key 
shapes are approximated by a multiway linear interpolation. The cartoon shape is ob­
tained from video by contour tracking. The user defines for each input key shape a 
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corresponding output key shape in 2D or 3D. Then the estimated motion parameters 
can be mapped from the 2D source to the 2D or 3D target. This strategy of designing 
input-output key shape pairs circumvents many problems that arise in standard skele­
ton based motion adaption. This work attempts to bridge the gap between techniques 
that target the traditional expressive animation world and the motion capture based 
animation world. Motion capture data is appropriate for domains that require real­
ism, whereas, traditional animation data is better suited for areas that call for more 
expressive and stylistic motion. This paper shows that traditional animation footage 
can be treated like motion capture data. 

Fig. 4.3. The top row shows the input frames with the tracked roto curves. The bottom row 
shows an animation that follows the curves. An artist draws all strokes in the first frame; the 
later frames are generated automatically (image courtesy Agarwala et al. [3]). 

Agarwala [2] presents a rotoscoping system that also uses contour tracking to 
generate animations from video (see Fig. 4.3). The user sketches contours directly 
onto the first frame of video. These sketches initialize a set of spline-based active 
contours that are relaxed to best fit the image. The system then uses motion estima­
tion techniques to track these contours through the image sequence. The contours 
are then used directly as primitives for the animation. This work is further improved 
upon by Agarwala et al. [3] where they describe a contour tracking algorithm cast as 
a space-time optimization problem to do rotoscoping. The user specifies the positions 
of the roto curves in the starting and the ending key frames. Then the system deter­
mines the positions and shapes of these curves in the intermediate frames by solving 
a space-time optimization problem. The objective function is a linear combination of 
five weighted energy terms depending on the change in length of the vector between 
adjacent samples on the curve, change in curvature, rate of motion, flow along nor­
mals to the curve points, and image gradient at points along the curve. The user may 
edit the resulting sequence to correct the errors produced by the optimization. These 
are then used to create 2D cartoon-style animations from video. 
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In another contemporary work by Wang et al. [132], video input is semiautomat-
ically rotoscoped into semantically meaningful regions using a mean shift-guided 
interpolation algorithm. These are then used to generate 2D cartoon animations. 

Video-based rendering of character animation 

In contrast to the above works, video-based techniques such as video interpola­
tion [21, 34] and video sprites [116] provide an image-based representation of dy­
namic scenes allowing synthesis of novel image sequences with visual quality com­
parable to the captured video. Starck et al. [120] present a system for video-based 
representation for free viewpoint visualization and motion control of 3D character 
models created from multiple-view video sequences of real people. They represent 
character motions as free viewpoint video reconstructed from multiple-view video 
sequences captured in a studio with 10 cameras. The motion sequences are blended 
to provide seamless motion cycles and smooth transitions between different motions. 
The blended video sequences are constructed as an offline process, and a motion 
graph is used to represent them and to create a 3D character animation. 

4.2.2 Camera tracking in video 

Matchmoving or camera matchmoving refers to the process of matching the position 
and angle of computer generated synthetic objects (such as an animated character) to 
real footage shot with a film or video camera. Graphical objects should be inserted 
such that they appear to move as if they were a part of the real scene. Seamless, con­
vincing insertion of graphical objects calls for accurate 3D camera motion tracking, 
stable enough over extended sequences so as to avoid the problems of jitter and drift 
in the location and appearance of objects with respect to the real scene. Matchmov­
ing finds several important applications in animation, augmented reality as well as 
in the creation of special effects [135]. In order to provide the versatility required by 
such applications, very demanding camera tracking requirements, in terms of both 
accuracy and speed, are imposed [11]. 

Camera tracking algorithms are well documented in recent computer vision lit­
erature [41, 118]. They generally involve the following steps: 

1. Compute feature points in each video frame (feature detection). 
2. Match the feature points between neighbouring frames (correspondence). 
3. Compute a projective reconstruction from the interest point matches (compute 

feature tracks). 
4. Compute a metric reconstruction (autocalibration of the camera). 

Camera tracking methods often need to work in unprepared, unstructured scenes, 
large-scale environments, or archive footage. Methods that avoid making any as­
sumptions regarding the environment exploit geometric constraints that arise from 
the automatic extraction and matching of appropriate 2D image features such as cor­
ner points. Corners are simply points of localized image structure, formed at the 
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boundaries of image regions of different brightness. Depending on their mode of 
operation, proposed approaches can be classified into two categories. 

The first category consists of methods designed for offline use on prerecorded 
image sequences [32, 40]. Such methods process image data in a batch mode and 
usually are noncausal, employing both past and future frames for deducing the cam­
era motion corresponding to the current frame. Albeit accurate, batch techniques are 
computationally demanding due to the use of global bundle adjustment, which in­
volves the solution of large, nonlinear optimization problems [128]. This, plus the 
requirement of operating on the whole sequence at once, makes batch methods inap­
propriate for use in time-critical applications. 

Methods operating in a continuous mode, in which images are processed incre­
mentally as acquired, constitute the second class of camera tracking techniques [10, 
14, 118]. Typically, such methods are causal, relying only on past frames for esti­
mating the camera motion for the current one. 

A lot of work has been done in the areas of tracking characters and cameras 
from video. These two areas are, however, always treated separately. There is no 
single method that combines both. To generate a view-dependent animation, both 
the camera and the character need to be tracked. We use existing methods to track 
the camera (see Section 4.3.1) and the character (see Section 4.3.2), and then use the 
tracked cameras and character poses to generate the view space. This allows us to 
combine the camera and the character information extracted from the video into one 
representation. We have primarily focused on monocular or single camera video and, 
hence, do not require any special setup to work with. 

Our tracking framework is initialized in the first frame by drawing the spline 
contours on the image. We also associate a 2D stick skeleton with the contour curves 
in the first frame (see Section 4.3.2). We use a Kalman-filter-based active contour 
framework, inspired by [16]. We find that it is suitable for tracking both animated 
characters and real people; so it can handle a variety of uses. In case the tracker 
fails for certain hard-to-track videos, e.g., for videos with prolonged self-occlusion 
of body parts, we provide interactive adjustments and restart the tracker. The system 
(see Section 4.3.2) based on [16] has many of the good features of the space-time 
optimization based system of Agarwala et al. [3]. The contour shape tracked can 
be biased toward an average deformable shape template to track rigid motions. The 
tracker can also be made almost independent of the average shape to track nonrigid 
motions and can even track agile motions in the presence of background clutter. It 
works at real time frame rates for tracking, which a system based on space-time 
optimization cannot do. 

In the framework, for every video frame on which the contour is tracked, 
the 2D stick skeleton also gets tracked along with the contours. We then use the 
view-dependent posing algorithm (see Section 3.5.2) to pose the 3D skeleton of the 
character from the tracked 2D skeleton. We have used a video clip, with signifi­
cant character and camera movement, as input to the pipeline for creating a view-
dependent animation from video (see Section 4.3). Moreover, the framework also 
has the ability to incorporate stylizations from multimodal inputs such as sketches 
and videos. 
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In the next section, we present our pipeline to create the view space from video. 
We then argue that the pipeline can be easily extended to other forms of input. We 
show that if such a pipeline can be created, the information required to create the 
view-dependent animation can be extracted. We also show that the view space is an 
apt representation for this information. 

4.3 Creating a View Space from Video 

A video differs from a set of sketches since there exists a strong temporal correlation 
between the frames of the video. In order to take advantage of this fact, a separate set 
of processing techniques is required. However, we maintain the higher level structure 
of the animation pipeline developed for dealing with sketches so that the animator 
finds it intuitive and easy to use (see Section 3.2). 
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Fig. 4.4. Schematic diagram depicting the pipeline to create a view space from a video. 

The input here is a video sequence of a character performing some action. In 
addition we require the base mesh of the character, which is to be used in the new 
animation. We also require the skeleton and the lattice as mentioned for sketches (see 
Section 3.3). We illustrate our method by using an example video sequence, which 
has significant camera movement during the character's action. We use this video as 
input to generate our view space and consequently a view-dependent animation. In 
order to recover the camera and the respective character poses, we track the camera 
and the character across the video. These are required to construct the view space 
from the video (see Fig. 4.4). 

4.3.1 Camera tracking 

The first stage in the pipeline shown in Fig. 4.4 is the recovery of the camera. In a 
video, however, the camera moves on a continuous path, except across shot changes. 
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Hence, we need to recover the camera position for every frame of the video. The 
solution is to track the camera across the video. For this purpose, we have used 
Boujou [18], a matchmoving software, which robustly implements the camera track­
ing algorithm. It processes video data in batch mode and is very accurate (see Sec­
tion 4.2.2). The output of the camera tracking phase is the camera view direction and 
viewpoint position for every frame of the video. When the character mesh is viewed 
using these recovered cameras, it appears aligned to the view in the corresponding 
video frame. 

In order to track the camera, we need to track the feature points on the background 
(i.e., the static part of the video). For this purpose, we mask out the moving character 
in all the frames of the sequence using an approximate polygonal mask. The masking 
out of the character has to be done manually only on the first frame, the last frame, 
and a couple of other key frames where the pose of the character differs significantly 
from neighbouring frames. The mask is then tracked and interpolated by Boujou for 
the whole video. We then track the camera from a dense set of background feature 
points (see Fig. 4.5(a)). Boujou performs camera tracking and returns the full projec­
tive camera matrix for each frame of the sequence. Figure 4.5(b) shows the camera 
path recovered (in red). We later use these tracked cameras to form our view space. 
The major advantage of the framework is that we can represent all the information re­
turned in the full projective camera in terms of the viewing direction and the distance 
of the viewpoint from the character in the view space. Now we need to associate the 
character's pose with the cameras we recover. 

(a) (b) 

Fig. 4.5. (a) feature points tracked by Boujou, (b) camera tracking by Boujou. The camera 
path recovered is shown in red (see colour insert). 
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4.3.2 Character posing 

After the cameras for each video frame have been recovered, we move on to the 
next stage in the pipeline (see Fig. 4.4), which is recovery of the character pose. 
As the character moves, the character pose also changes across the frames of the 
video. Hence, we have to also track the character across the video. We want a tracker 
that works reasonably well for rigid as well as agile motion. It should work in the 
presence of background clutter and should be able to track real people and animated 
characters. We draw inspiration from many of the prior works done in video-based 
animation [2, 3, 22], and use a contour tracker. We have implemented a contour 
tracker based on the work on Active Contours by Blake and Isard [16]. 

The tracker estimates a contour shape, represented by a spline curve with control 
points X(t), Y(t) at any instant of time. The tracker is initialized in the first frame by 
drawing the spline contours on the image. This defines an average shape template 
whose control points are given by X(0, Y(f). A shape transformation from the tem­
plate to the current shape is given by Q. The transformation for the template shape 
itself, Q, is the identity transformation. 

The tracker then associates a Kalman filter with each contour. Kalman filters 
comprise two steps: prediction and measurement assimilation. Prediction employs 
a second-order object dynamics model to extrapolate past motion from one video 
frame to the next. Second-order dynamics, written in discrete time, can be defined 
using a state vector X as 

*.-(f--0°)-
Successive video frames are indexed n = 1,2,3,... 

The dynamics of the tracked object is now given by the following difference 
equation: 

Xn+l=AXn + (*\ . (4.2) 

Here, A is a matrix representing the deterministic part of the dynamics, while at 
each n, w„ is an independent, normally distributed vector of random variables. The 
covariance of wn specifies the random part of the dynamics model. The assimilation 
stage blends measurements from a given frame with the latest available prediction of 
the current state, Xn, using the following equation: 

Xn+x=AXn + K^xV (4.3) 

where Xn+\ is the next predicted state, K is the Kalman gain matrix, and Z is the state-
space measurement vector. The actual measurements on the image are in the form of 
feature points detected by the tracker along the contour normals. Since the tracker 
uses only intensity information to compute features, it works on gray-scale images. 
The contour shape tracked can be biased toward the average shape template to track 
rigid motions. It can also be made almost independent of the average shape to track 
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nonrigid motions and can even track agile motions in the presence of background 
clutter. 

(a) (b) (c) (d) 

Fig. 4.6. Posing the character from a video frame: (a) contours tracked on a frame of the 
input video with joints of the 2D skeleton marked in white, (b) corresponding joints on the 3D 
skeleton marked in white, (c) 3D skeleton and character's mesh after posing, (d) final rendered 
pose of the character (see colour insert). 

The example we show here is for an animated character, but a Kalman contour 
tracker is known to work for tracking real people as well. In case of prolonged self-
occlusion of a body part — a situation no tracker can handle — we provide inter­
active adjustments and restart the tracker. Though a CONDENSATION tracker may 
behave better for kinematic singularities [39], we have used the Kalman contour 
tracker for its relative ease of implementation. We have found it sufficient for the 
purpose of demonstrating the concepts of this book. 

We associate multiple contours with the character: one contour for every segment 
of the body, for example, arms, legs, hands, and feet. From the tracked contours we 
recover a 2D skeleton, whose segments represent the position of each body part. 
This is done by associating a 2D skeleton with the contour curves in the first frame 
of the sequence. We define the position of joints of the 2D skeleton relative to the 
points on the contour. Since this association holds across all the frames on which the 
contour is tracked, the 2D skeleton also gets tracked along with the contours. Thus, 
if the contour tracked is correct, then the 2D skeleton tracked is also correct. Fig­
ure 4.6(a) shows the tracked contours on one of the frames along with the associated 
2D skeleton. 

We pose a 3D character mesh using the tracked camera and the tracked 2D skele­
ton. In order to construct the view space, a set of cameras and corresponding char­
acter poses are required. The 2D skeleton is a good approximation of the charac­
ter pose for an individual frame. However, a continuous sequence of these tracked 
2D skeletons may have oscillations. In order to avoid this problem, the animator 
chooses a sparse set of appropriate frames from the video sequence. While selecting 
the frames, the animator also keeps in mind that these frames should be able to re­
produce the motion from the video to a desired degree of accuracy. Posing is done 
only for these frames. In this example, the animator has identified 15 key frames for 
posing. Before the posing is carried out, the scaling of the camera coordinate system 
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has to be matched with the scaling of the character coordinate system. This can be 
done if the estimate of a true dimension is known in the camera coordinate system. 
This allows us to set up an isotropic scaling matrix to be applied to the character 
before the posing process. The 3D character mesh has a skeleton embedded inside it 
[see Fig. 4.6(b)]. When this skeleton is moved, it moves the mesh along with it using 
blended vertex weights. The correspondence between the 2D skeleton and the 3D 
skeleton is specified only once during the whole process [Figures 4.6(a) and 4.6(b) 
show the joint correspondences marked in white]. The pose computed is such that 
the 3D skeleton projects onto the 2D skeleton for the corresponding camera. This is 
done using the view-dependent posing algorithm, given in Section 3.5.2. The result­
ing pose minimizes the error between the 2D skeleton and the projected 3D skeleton 
while maintaining kinematic constraints on the 3D skeleton. Figure 4.6(c) shows the 
posing of the 3D skeleton and the character mesh. The final rendered pose is shown 
in Fig. 4.6(d). The animator also has the choice of refining the poses manually, if so 
desired. 

We track the contours on the image to obtain the 2D skeletons, but the contours 
themselves can be used to transfer mesh deformations by matching them to the sil­
houette curves of the mesh using the view-dependent mesh deformation algorithm 
(see Section 3.5.4). Semiautomatic techniques to do this have been demonstrated 
by [91] (see Section 3.1.2). Since in this example the character in the video and in 
3D are not the same, manual intervention would be required on part of the animator 
in case such deformations are to be transferred meaningfully. 

Figure 4.7 shows the posed character for two sample key frames. After we have 
posed the character for all the key frames chosen by the animator, we are ready to 
construct the view space. 

4.3.3 Constructing the view space 

We have the full 3 x 4 projective camera matrix, P, for every camera used for pos­
ing. Hence, as explained earlier in Section 3.6.1, we recover the view direction using 
Equation (3.12), and the look-at point using Equation (3.13). We normalize these 
view directions to get the key view directions, v. In Fig. 4.8, the red spheres repre­
sent the camera centers and the red lines show the respective view directions. The 
character in Fig. 4.8 is currently in its base pose. Note that all the view vectors do 
not intersect at a common point even though their general direction is toward the 
character. Hence, they do not lie on one sphere centered at a common look-at point, 
but in a general view space. Such a configuration of cameras cannot be handled by 
techniques like those in [109]. 

Since the animator has chosen 15 key frames from the video for posing, we use 
the corresponding z/'s from those frames to construct the view space. If we consider 
a camera path P(v, f) through these v, then at a time instant t_ : v = v, the instanta­
neous view space is a unit sphere centered at the look-at end of the normalized view 
direction vector. This is because a unit sphere models the view space made of all 
the possible unit view direction vectors toward a particular point. The complete view 
space is the union of spheres centered at each of the look-at points (see Section 2.2). 
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(a) 

(b) 

Fig. 4.7. (a) tracked contours and associated 2D skeletons on two key frames, (b) correspond­
ing posed character viewed through their respective recovered cameras (see colour insert). 

Figure 4.8 shows the view space generated (in green) for this example. Associated 
with every view direction, v, is the corresponding character pose, mv. We incorporate 
the distance, dv, associated with the corresponding view directions, v, by using the 
length of the vector C- l [see Equation (3.13)]. Note that this view space construction 
is similar to the one explained in Section 2.2 for the Hugo's High Jump animation 
sequence. Hence, we see that the view space generated from sketch- and video-based 
inputs are constructed using similar pipelines. This makes the use of the framework 
extremely easy for the animator. 
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Fig. 4.8. The viewpoints, the view directions and the view space (see colour insert). 

4.4 Creating the View Space from Multimodal Inputs 

We can now map the information present in a set of sketches and a video to a view 
space. Even for other input methods, like motion capture, the basic blocks of the 
pipeline to create a view space will remain the same, i.e., the camera recovery stage 
followed by the character pose recovery stage. The view space can thus form a com­
mon representation for all these forms of input. It can be very easily used to fuse 
together these inputs. Thus we have solved the first two problems offered by the task 
of multimodal authoring. We have shown how to extract and meaningfully represent 
the information contained in multiple types of input. 

The animator may choose to select some camera shots from a video, a few rel­
evant poses from sketches, and motion data from motion capture and map them to 
the same view space. If synchronized video streams can capture a performance from 
multiple directions (as is done in a motion capture stage), then all these videos taken 
together can form a view space as they document the character poses from different 
directions over a period of time. This maps nicely into the framework and can be 
used to animate a new character easily. The animator can add more poses to vary the 
movement from the recorded performance, if so required. 

In order to do all of the above, we must be able to recreate the camera and char­
acter motions from all our input streams. We must also be able to use a combination 
of various inputs as desired by the animator. In the next section we present a method 
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to generate a view-dependent animation from the view space we create using our 
pipeline. 

4.5 Generating the Animation from Video 

In a video we have only one view direction at a given time instant, hence, all the 
camera shots recovered from the video maps to one particular path traced on the 
envelope of the view space. This path is the smooth path passing through all the 
recovered camera positions. In order to recreate the camera and the character motion 
from video, we move the camera along this path. 

We need to compute the novel views for all points, p, on the camera trajectory, 
P(v, d, f), to generate the animation. We summarize the process for generating the 
animation in Algorithm 4.1. 

Require: The view space must be created before this algorithm can be run. 
Require: The camera path P(v, d, t) must be given. 

I begin 
2 foreach point p on P(v, d, f) do 
3 Find the r-closest key viewpoints, v, as explained in Section 3.6.2 
4 qv_ = d v 
5 foreach v in the r-closest set ofv do 
6 Compute the length of qv_ projected along v as d v • v. 
7 Find d1^ and df such that dlJ < d v • v < d®, by a binary search in 

the sorted tuple list. 
8 Compute ft using Equation (2.2). 
9 Compute wq. using a radial blending function similar to the one 

given in Equation (3.14) with d(qL, q-v) as the distance term. 
10 Ensure that Yiv wq-v = 1-
n Compute the blended character pose for qv_ using Equations 2.3 

and 2.4. 
12 end 
13 end 
14 end 

Algorithm 4.1: Algorithm to generate a view-dependent animation from a view space. 

Figure 4.9 shows blending using the radial blending function. Figures 4.9(a) and 
4.9(b) show the character poses for two of the key views. The green sphere in the 
figures is the current viewpoint and the green line is the current view direction. The 
blue spheres are the r-closest key views for the current view position. When the green 
sphere is at a key view the pose matches exactly with the character pose associated 
with that key view even though other key views may be in the r-closest set. This is 
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because the weight associated with that key view becomes 1 and 0 for the others. 
Figure 4.9(c) shows that when the current view (green sphere) lies between two (i.e., 
r = 2) key views (blue spheres), the character pose is a blend of the two poses. 

For every point on the camera path, the algorithm requires a single pass through 
all the meshes that have to be blended (in the last step of the inner loop) and is, 
therefore, 0(n), where n is the total number of vertices of the meshes (i.e., it is 
linear in the number of vertices). The computations involved are quite simple, and the 
animation is generated in real time, as the user specifies a camera path, at frame rates 
varying from 30 to 60 frames per second (fps) depending on the density of views in 
the view space. The machine used is a Pentium 4 at 1.2 GHz with a GeForce 2 MX 
graphics card. 

The algorithm generates the same camera and character motion captured from 
the video on a new character. We also have another example to demonstrate the gen­
eration of view-dependent animation from video, in which we use a short clip from 
DreamWorks Animation SKG's Shrek [1] to generate a view-dependent animation. 
In the input sequence, Shrek is flexing his muscles in the arena after having beaten-
up the Lord Farquaad's guards, as the camera pans across the arena. This sequence 
was selected because it also has significant camera motion during the character's ac­
tion. We cannot reproduce the original input due to copyright restrictions, but the 
generated view-dependent animation can be seen. 

The extent of similarity of the movement in the new animation to the original 
movement in the video is a direct consequence of the number of sampled key views 
used to create the view space (15 in this example). A denser sampling will recreate 
the motion more faithfully than a sparse sampling but requires more work. Decision 
of the threshold for the sampling-density-versus-animation-quality trade-off is left 
to the animator. The algorithm, however, works well with a relatively sparse set of 
key views and associated poses also. The movement style of the generated animation 
can be altered during the posing phase in order to create a stylized variation of the 
movement recovered from the video. Another point to consider is that all the char­
acteristics of the original video cannot be directly mapped to any new character. In 
the example where we have used the clip from Shrek, the original video has a lot of 
fine-level facial animation and some secondary cloth animation. This cannot be re­
produced on the new character because we do not have requisite animation controls 
for extensive facial and cloth animation on the new character. The posing algorithm 
we use essentially reconstructs the poses at the sampled key frames. It does not ex­
plicitly make use of the temporal continuity information present between the key 
frames. This can be incorporated in the posing process by tying up the posing algo­
rithm to the character tracking algorithm in an error-correcting feedback loop. This 
will further enhance the performance of the posing algorithm. 

Note that in this particular example, associated with every key view direction, v, 
there exists exactly one character pose, mv, at a particular distance, dv. Hence, the 
tuple list associated with every v has length 1, and the blending of poses on the basis 
of distance along a view direction is not required. However, we illustrate blending of 
poses based on distance in another example explained in Section 4.6. 
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(a) (b) (c) 

Fig. 4.9. Character poses associated with key views and novel view generation (see colour 
insert). 

Figure 4.10 shows the camera path traced by qv_ as a trail in green, at the correct 
distances as recovered from the camera tracking. This path exactly matches the path 
recovered by Boujou. It does not lie entirely on the envelope but partly inside it as it 
is drawn using the distance of the viewpoint. The path P(v, d_, t) has a corresponding 
projection of this trail on the envelope of the view space. 

Fig. 4.10. The top row shows the camera path. The bottom row shows the corresponding 
generated animation frames (see colour insert). 

Hence, we can generate view-dependent animations from video. We see, how­
ever, that the information content from one video maps to a single path on the view 
space. We show in the next section that it is possible to generate an animation by 
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tracing other paths on the envelope when multiple view directions with their corre­
sponding poses are defined for a character at a given instant in time. These multiple 
view directions may be obtained, for example, from multiple synchronized video 
sources or from augmentation of the view space with sketches. 

4.6 Generating the Animation from Multimodal Inputs 

We have shown how we can use a video to create a view space and generate a 
view-dependent animation. We now show how the animator can integrate inputs from 
sketches and video using the framework to generate a new animation. Suppose the 
animator wants to replicate the camera movement of a master cinematographer from 
some existing movie (video) in the new animation. She, however, wants to give a 
unique movement style to the character and hence wants to pose the character inde­
pendently, using sketches. 

The first step is to recover the camera path from the video and the character poses 
from the sketches. 

4.6.1 Recovering the camera path from video and the character poses from 
sketches 

The video we choose for constructing the example is the famous ballroom dance 
sequence from Disney's Beauty and the Beast [129]. In this sequence the camera 
moves in a complex downward spiral. We track the camera path, after masking out 
the moving characters, as explained earlier in Section 4.3.1. Figure 4.11 shows the 
recovered camera path. Note that we cannot show the actual frame of the video on 
which camera tracking was done because of copyright issues, but the camera path 
and feature points shown in Fig. 4.11 are what were actually obtained during our 
experiments. We want our rendering camera to move along such a camera path in 
our animation. 

The character poses required in the animation are sketched by the animator. We 
recover the camera corresponding to each sketch and recover the associated character 
pose, as explained in Sections 3.4 and 3.5 (see Fig. 4.12). 

We want to generate the animation by moving along the path recovered from the 
video. To achieve this objective, we have to transplant the camera path recovered 
from the video on the view space constructed from the sketches. 

4.6.2 Transplanting the camera path on the view space 

The cameras recovered from the sketches form a view space. The view space and 
its envelope is shown in Fig. 4.13(a) with the recovered cameras shown as the small 
red and blue spheres. The small green sphere denotes current view direction, and 
the blue spheres are the selected r-closest key views for the current viewpoint. The 
character's animation is generated by tracing paths on this envelope. 
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Fig. 4.11. The recovered camera path is seen in the right bottom. The points are the feature 
points on the background, tracked by Boujou in order to recover the camera path. 

Fig. 4.12. The top row shows some of the sketched poses. The bottom row shows the corre­
sponding poses recovered by the framework. 

We want to transplant the camera path recovered from the video sequence onto 
this view space. The recovered camera path and the view space are in different 
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Fig. 4.13. (a) envelope of the view space constructed using the cameras recovered from the 
sketches, (b) transplanted camera path (see colour insert). 

coordinate systems. The transplantation can be done meaningfully only when we 
are able to register the two coordinate systems. The two coordinate systems are reg­
istered when an average vector from the character to the camera position in the video 
maps to a similarly oriented character-to-camera vector in view space (see Fig. 4.14). 
Thus, we want the mapping from one coordinate system to the other to preserve the 
average relative orientation of the camera with respect to the character. We have a 
simple algorithm to transplant the camera path into the view space by correctly reg­
istering the two coordinate systems with each other (see Algorithm 4.2). 

The algorithm thus places the path in the view space in such a manner that the 
relation of the camera position to the character's position is visually similar to that in 
the video from which the path is extracted. In this particular example, the character 
moves on the ground, and since we can track feature points on the ground plane, 
calculating an estimate of the point A is easy. B is also obtained easily as the average 
of the recovered camera positions. 

Note that the algorithm described above is to assist the animator in placing the 
transplanted path. The animator can choose to place the path interactively in a differ­
ent position if it is required, in order to create the desired animation. 

As the rendering camera moves along this path, the corresponding animation is 
automatically generated. The transplanted path [shown as a green trail in Fig. 4.13(b)) 
in essence matches the path recovered from the video sequence (as shown in 
Fig. 4.11). The green trail is the locus of all the qv_ at their correct distances along their 
respective view directions. This demonstrates that the framework is able to handle 
all the intricate camera variations in terms of view direction and viewpoint distance 
embodied in the path and generate a new animation. 

Thus, we can generate view-dependent animation from multimodal inputs. We 
can augment a view space by adding more key viewpoints and key poses. Similarly, 
we want to augment the camera path by extending the transplanted camera path. 
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Require: A known true dimension in the coordinate system in which the 
camera was recovered relative to a dimension in the character 
coordinate system 

1 begin 
2 Match the scaling of the coordinate system in which the camera path was 

recovered to the scaling of the coordinate system of the character by 
multiplying with a isotropic scaling matrix. This matrix can be 
constructed from the known true dimension. 

3 Let O be the origin of the coordinate frame in which the camera was 
tracked. 

4 Let A be the average ground position of the character in the video. 
5 Let B be the average position of the recovered camera. 
6 Let O' be the origin of the coordinate frame in which the view space is 

constructed. 
7 Let A' be the average ground position of the 3D mesh model of the 

character. 
8 Let B' be the average position of the transplanted camera in the coordinate 

system of the view space. 
9 The average character-to-camera vector is given by 

to Shift the origin of this coordinate system to A. 

n The average character-to-camera vector is now given by Ofl = XB. Shift 
the view space such O' coincides with A'. 

12 Place the camera path in the view space such that the vector giving the 

average position of the camera, O'B', is the same as Ofl. 
13 end 

Algorithm 4.2: Algorithm to transplant the recovered camera path in the view space. 

4.6.3 Augmenting the camera path 

The camera path can be augmented by adding new path segments after the trans­
planted path. The animation sequences that result from the existing and added path 
segments are seamlessly blended if the added path segment is continuous with the 
existing path. 

We augment the path transplanted in the previous section. The augmented path 
is shown in Fig. 4.15 along with the generated animation frames. 

In this example, the animator has created poses at varying distances along the 
same view direction. The in-between poses for the animation are generated as ex­
plained in Section 4.5 using Algorithm 4.1. An example of this is shown in Fig. 4.16. 
In the top row the green trail (i.e., q^) changes only in distance and not in direction 
with respect to the character. The projection of qv_ on the envelope, i.e., v, represented 
by the larger green sphere is stationary, indicating that the view direction is constant. 
However, the corresponding character pose changes as shown in the bottom row are 
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(a) (b) 

Fig. 4.14. (a) Relation between the average (tracked) character position on the ground plane 
and the average (tracked) camera position, (b) shows the same relation between the trans­
planted path and the posed character. 

Fij». 4.15. The top row shows the camera path. The bottom row shows the corresponding 
izeiierated animation frames. 

a result of blending caused due to change in distance. The fact that the camera has 
moved farther away from the character is also apparent in the rendered animation 
frames shown in the bottom row. 

Thus, we have also solved the third problem in multimodal authoring of moving-
camera character animations (see Section 4.1). The animator has to trace paths on the 
envelope of the view space to create the animation. Since all the various input streams 
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Kî . 4.16. The top row shows the camera p;ith changing only m distance. The bottom row 
shows the corresponding generated animation frames (see colour insert). 

can be represented as ihe view space, this serves as a common intuitive interface for 
designing view-dependent animations from these inputs. A path on a complex view 
space may seem difficult to interpret. All the parameters defining a path, however, 
are easy to understand because they map to physical camera parameters like camera 
rotation, translation, and focal length. The animator also gets instant visual feedback, 
as the animation resulting from the traced out path is displayed in real lime. 

4.7 Chapter Summary 

In this chapter we have shown how to generate view-dependent animation from mul­
timodal inputs. We address the problems inherent to multimodal authoring of view-
dependent animations. The primary challenges are to develop techniques to extract 
relevant information from different types of input, to find a common representation 
for all this information, and to provide an interface to the animator that can be used 
to generate the animation. We have presented solutions to each of these problems in 
this chapter. 

We examined the prior work done in the area of video-based animation. In or­
der to do so, we surveyed a variety of methods addressing three stages of a video-
based capture system. These are model initialization, tracking, and pose estimation. 
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Model initialization techniques range from manual initialization to complex pose 
fitting based on anthropometric data. Tracking methods vary from the use of static 
thresholding and hidden Markov models to the Kalman filter. Pose estimation tech­
niques use various abstraction models like blobs, contours, or textures. There is lim­
ited work done on the capture of the motion of cartoon characters from a video. 

We have presented a pipeline to create a view space from video input. The rel­
evant camera and character pose information can be extracted from the video by 
utilizing camera and character motion tracking techniques. The pipeline has sim­
ilar higher level structure as the pipeline we developed for sketch-based input in 
Chapter 3. Pipelines to map other forms of input to a view space can be similarly 
constructed. Thus, the view space serves as a common representation for all types of 
inputs. 

The method to generate a view-dependent animation from a view space has been 
demonstrated. We first explained the procedure for generating animations from video 
inputs. An algorithm is presented that generates the animation, given a camera path 
on the view space. The animation is generated in real time as the animator traces a 
path on the view space. This procedure is extended to multimodal inputs. 

We have illustrated with an example how to integrate sketch- and video-based 
inputs for creating a moving-camera character animation. The camera path is ex­
tracted from a video, and then the path is transplanted to the view space created from 
sketches. We have presented an algorithm for automatic transplantation of the cam­
era path. The view space can be augmented with new key viewpoints and poses. We 
have also demonstrated that it is possible to augment the camera path itself. We ex­
tend the transplanted camera path and show that the animations generated from the 
two segments of the path seamlessly blend together. 



5 

Stylistic Reuse of View-Dependent Animations 

We are now in a position to appreciate the challenges and difficulties faced in creat­
ing a moving-camera character animation. We can create view-dependent animations 
from a variety of inputs using the framework (as seen in Chapters 2 to 4). Here, we 
consider the different view-dependent animations created by changing the render­
ing camera, as stylistic variations of each other. We are interested in reusing these 
variations to synthesize novel animations. We call this process stylistic reuse. The 
view-dependent stylizations can be put to myriad uses in order to synthesize a novel 
animation. 

We present three broad classes of reuse methods. First, we show how to ani­
mate multiple characters from the same view space. Next, we show how to animate 
multiple characters from multiple view spaces. We use this technique to animate a 
crowd of characters. Finally, we draw inspiration from cubist paintings and create 
their view-dependent analogues. We use different cameras to control different body 
parts of the same character and then combine these parts to form a single character 
in the animation. 

Since this chapter of the book bridges across the two themes of stylized animation 
and animation synthesis, we begin by reviewing the related work pertaining to these 
two areas. 

5.1 Prior Work 

Stylized or nonphotorealistic animation and rendering have been used, in recent 
years, to produce visually appealing imagery. Reuse of stylized animation is difficult 
because often the stylizations are generated for a particular viewpoint. We present 
here the prior work done in these two diverse areas. 

5.1.1 Stylized animation 

Several artwork styles have been explored in stylized animation and rendering liter­
ature such as pen and ink, painting, informal sketching, and charcoal drawing. Many 
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of these focus on a specific artistic style or a closely related family of styles. For 
example, Meier [100] describes a technique for creating animations evocative of im­
pressionistic painting. 

Litwinowicz [95] uses image and video analysis to generate impressionistic ef­
fects. He allows a user to select size and style of the brush stroke and automatically 
processes a segment of video. Optical flow and edge detection are used to manip­
ulate a mesh of persistent brush strokes. Additionally, the user can choose to have 
the brush strokes follow the contours of an image or fix them to a global angle. 
Hertzmann [56] introduces a method to automatically paint still images with vari­
ous stroke sizes and shapes, and then extends the technique to video [59]. This work 
addresses the problem of temporal incoherence in Litwinowicz [95] by selectively 
updating the properties of brush strokes that lie in video regions that change sig­
nificantly. However, flickering and scintillation of brush strokes remains a problem. 
Kowalski et al. [82] create cartoon-style renderings reminiscent of Dr. Seuss. 

Hertzmann et al. [58] present a versatile technique to learn nonphotorealistic 
transformations based on pairs of unpainted and painted example images. These 
transformations can then be applied to new inputs. This has been extended to video 
processing by Haro and Essa [51]. 

In the system described by Kalnins et al. [74], a user draws strokes over 3D 
models, which are propagated to new frames. DeCarlo and Santella [38] present an 
algorithm to stylize photographs by running inputs through known image prepro­
cessing algorithms to segment the image into regions that could be given a fixed 
color. Klein et al. [79] present a tool for generating nonphotorealistic animations 
from video. This method undertakes a spatio temporal analysis of video. A novel as­
pect of this work is the use of a set of rendering solids where each rendering solid is a 
function defined over an interval of time. This allows for the effective and interactive 
rendering of many nonphotorealistic styles. 

Fig. 5.1. The input image is shown in the left top, the left bottom image shows a visualization 
of the radial basis function. The output is shown in the center image. A detailed view of the 
rendered strokes is shown in the right image (image courtesy Hays and Essa [53]). 
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Hertzmann [57] introduces a new method for adding a physical appearance to 
brush strokes. The basic idea is to add height fields to brush strokes to allow for 
lighting calculations. The resulting highlights and shading give the paint strokes a 
more realistic appearance. Hays and Essa [53] give techniques to transform images 
and videos into painterly animations depicting different artistic styles. They use ra­
dial basis functions to globally interpolate brush stroke orientation (see Fig. 5.1). 
Temporal incoherency, which was in the past the chief detractor of NPR video tech­
niques, is avoided both by the addition of temporal constraints to previously re­
searched brush-stroke properties and by the addition of new brush stroke proper­
ties like opacity. Winnemoller et al. [138] present an automatic, real-time video and 
image abstraction framework that abstracts imagery by modifying the contrast of vi­
sually important features, namely, luminance and color opponency. They reduce the 
contrast in low-contrast regions using an approximation to anisotropic diffusion and 
artificially increase contrast in higher contrast regions with difference-of-Gaussian 
edges. 

Glassner [43] talks about using cubist principles in animation, i.e., rendering 
simultaneously from multiple points of view in an animation using an abstract cam­
era model. Stylizations based on innovative use of the camera have also been re­
searched [4, 29]. 

View-specific distortions also form a very elegant method for specifying stylized 
animations. View-dependent animation is inherently stylized due to the variations in 
the animation that occur by changing the parameters of the rendering camera. We 
want to reuse these stylistic variations to synthesize new animations. 

5.1.2 Synthesis and reuse of animation 

Recently, there have been a number of projects that allow an animator to create new 
animations based on motion capture data. Rose et al. [112] use radial basis functions 
to interpolate between and extrapolate around a set of aligned and labeled example 
motions (e.g., happy or sad and young or old walk cycles), then use kinematic solvers 
to smoothly string together these motions. 

Brand and Hertzmann [19] describe style machines as a technique for stylistic 
motion synthesis that works by learning motion patterns from a diverse set of motion 
capture sequences. In the work of Li et al. [92], the data is divided into motion 
textons, each of which can be modeled by a linear dynamic system. Motions are 
synthesized by considering the likelihood of switching from one texton to the next. 

Arikan and Forsyth [7] also present a method for automatic motion generation at 
interactive rates. Here, the animator sets high-level constraints, like pose and position 
of a character at specific frames, and a random search algorithm finds appropriate 
pieces of motion data to concatenate. In a closely related work, the concept of a 
motion graph is defined to control a character's locomotion [81]. The motion graph 
contains original motion and automatically generated transitions. New motion can 
be synthesized by building walks on the graph. This allows a user to have high-level 
control over the motions of the character. It is used for generating different styles of 
locomotion along arbitrary paths (see Fig. 5.2). 
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Fig. 5.2. A motion generated to fit to a path that spells "Motion Graphs" in cursive (image 
courtesy Kovar et al. [81]). 

In the work of Lee et al. [88], a new technique is developed for controlling a 
character in real time using several possible interfaces. The user can choose from a 
set of possible actions, sketch a path on the screen, or act out the motion in front of a 
video camera. Animations are created by searching through a motion database using 
a clustering algorithm. Arikan et al. [8] allow the user to annotate a motion database 
and then paint a time line with the annotations to synthesize newer motions. 

Hsu et al. [63] present a process for transforming an input motion into a new style 
while preserving its original content. Their system learns to translate by analyzing 
differences between performances of the same content in input and output styles. 
It relies on a correspondence algorithm to align motions and a linear time-invariant 
model to represent stylistic differences. Once the model is estimated with system 
identification, it is capable of translating streaming input with simple linear opera­
tions at each frame. 

In recent work, Lee et al. [89] present a technique for allowing animated char­
acters to navigate through a large virtual environment, which is constructed using a 
set of building blocks. The building blocks are arbitrarily assembled to create novel 
environments. Each block is annotated with a motion patch, which contains the in­
formation about what motions are available for animated characters within the block. 

Our technique for synthesizing stylized animation is targeted toward generating 
stylistic variations of the animations of a character depending on viewpoint changes 
rather than synthesizing new motion in general. The basis of view-dependent anima­
tion provides us a setting to effect such variations very easily. We discuss the repre­
sentation of such a reuse methodology in terms of the framework (see Chapter 2) in 
the following sections. 
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5.2 Animating Multiple Characters from the Same View Space 

We want to reuse the view-dependent variations of a character to animate multiple 
characters and create a novel animation. 

Let us assume that a camera, C\, traces a path, Pi(v, d, f), on a view space, "VS. 
A second camera, C2, traces another distinct path, P2(v, d, t), on "VS. The animation 
generated by C\ can be thought of as an ordered set of n frames V\, given by 

9\ = {V\ :l<i<n}, (5.1) 

where p\ is the pose of the character in the i-th frame. The order implicitly imposed 
on the set is the temporal sequence of the frames in the animation. Similarly, the 
animation generated by C2 gives another ordered set of m frames V2, 

<P2 = {VJ
2 : 1 < j < m]. (5.2) 

The animations V\ and V2 are view-dependent variations of each other, i.e., they 
are generated from the same view space. The poses p\ e *VS and pJ

2 e "VS are 
view-dependent variations, or instances, of each other. 

Key View Directions 

New Animation with 
Multiple Characters 

Envelope 

Camera Path 2 Camera 2 

Fig. 5.3. Different camera paths traced on the same view space generate different instances 
of the animation with different character poses. These different poses can be used to animate 
multiple characters in a new synthesized animation. 

by 
We then define a novel animation with two characters as an ordered set Q, given 

Q = {<q*j e c\k
2) : d[ = p* and qk

2 = pk
2 V &, 1 < k < min(n, m)}, (5.3) 
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where (q* 0 cr5,) indicates that a frame k in Q consists of two character poses. The 
© operator indicates that the two poses are being composed together to form the 
synthesized animation frame. The composition can be done in 3D space if the two 
poses are registered to a common coordinate system. The composition can also be 
done in 2D image space by compositing the poses after they have been rendered into 
the frame buffer (see Fig. 5.3). The novel animation has min(n, m) frames. 

Multiple characters may visually obscure each other. If the compositing of the 
characters is done in the image space, this can be handled by rendering them into 
different buffers and maintaining separate depth buffer information to resolve occlu­
sion during compositing. If the compositing is done in the object space, then handling 
occlusion is easier as standard rendering can be used. 

In this manner, we can reuse the view-dependent variations of a character to ani­
mate multiple characters and create a new animation. As an example of this method 
of reuse, we create a view space and plan the movement of two cameras on it. 

In this particular example, we create a ballet animation for Hugo. We create an 
animation where we want two characters to perform a coordinated ballet sequence; 
however, both the characters are instances of the same character each performing 
different ballet moves. 

5.2.1 Planning, sketching, and creating the view-dependent models 

First the storyboard for the animation is planned. Then the various key poses are 
sketched, for which the view-dependent models are created later. This stage is guided 
by the animator's conception of the various poses and camera moves that constitute 
the animation. A part of the storyboard, illustrating some of planned key frames with 
the poses of two characters and the rough camera movement, is shown in Fig. 5.4. 
The red and green arrows show the planned camera movement. The black arrows 
show the direction in which the character will appear to turn in the video (this move­
ment is because of the camera, which actually moves in the opposite direction). The 
blue arrows show approximate directions in which the legs of the character will 
move. 

The animator uses the techniques explained in Chapter 3 to recover the cameras 
from the sketches, which aligns the base mesh with the sketched pose, and to deform 
the mesh to get the best possible match with the sketches. We show the posed meshes 
in Fig. 5.5(b) for the sketches shown in Fig. 5.5(a). The poses and the recovered 
cameras form the view-dependent models, which are then used to create the view 
space. 

5.2.2 Generating animations over a special view space 

This example is an instance of the reuse strategy discussed in Section 5.2. However, 
here we have a view space configuration that makes the implementation of this theory 
nontrivial. This is because the example requires the character to stand in place and 
perform certain ballet steps. Thus the view space is an aggregation of view spheres 
that are separated only in time and not in space (see Section 2.2). 
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Roughly planned camera paths 
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Fig. 5.4. Part of the story board for the reuse animation example (see colour insert). 

(a) 

+-H4** 
(b) 

Fig. 5.5. (a) some of the sketches for the reuse example, (b) corresponding posed meshes seen 
from the recovered cameras. 

We cannot put all the views into a single view sphere because of the following 
reasons: Such a construction is nonintuitive since it does not capture the temporal 
characteristics desired by the animator. In this animation, the character has different 
poses, for the same view direction, at different times. A single view sphere cannot 
generate such an animation. Also, it causes the planned camera path to be undesir­
ably influenced (during interpolation for getting novel views) by the added views. 
Multiple view spheres at the same point in space separated in time are perfectly 
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representable within our general framework (see Section 2.2); however, their imple­
mentation requires extra effort in order to generate an animation over such a view 
space. 

r-closest 
Selected Key Viewpoints Camera Path 

Common Key Viewpoint 

First View Sphere 
Current Viewpoint 
Passing Through 
Common Key Viewpoint 

Common Key Viewpoint 

Second View Sphere 

Fig. 5.6. The camera transitioning from one view sphere to another when the point of transition 
is a key viewpoint. 

We move across four view spheres during the animation. The challenge in work­
ing with multiple view spheres lies in creating a seamless blend between the result­
ing animations as the viewpoint is transferred from one view sphere to another. Let 
VS i and VS 2 be the two view spheres, and let us consider the case of transitioning 
from VS \ to VS2- The converse case is symmetric. Let V = [vt• : 1 < / < 7C} and 
V = {v'. : 1 < j <*K'} represent the set of key viewpoints of the two view spheres, 
respectively. Let the point of transition from VS \ to VS 2 be vc such that vc e VS \ 
and vc e VS2- Note that the camera path has to pass through vc, by definition. We 
have the following cases for the point, vc\ 

1. The common point, vc, is a key viewpoint, v, and the key poses associated with 
v in the two view spheres are the same, m\ = m2

v = mv. In such a case the 
transition is very easy. When the camera reaches vc, we simply swap the current 
view sphere from VS \ to VS2. 

2. The common point, vc, is a key viewpoint, v, and the key poses associated with 
v in the two view spheres are different. We use the weighing function given in 
Equation (3.14) for calculating the blending weights. If dthresh is the distance 
threshold decided by the animator and v is the current camera position, then we 
swap m\ and m2

v when d(v, v) = dthresh- We swap the view spheres themselves 
only when v = v (see Fig. 5.6). It should be noted that only swapping the view 
spheres when the current viewpoint reaches the point of transition will cause a 
discontinuity in the animation. We need to swap the key poses as soon as the 
current camera enters a region where the pose at v begins influencing the current 
pose. 

3. The common point, vc, is not a key viewpoint. In this case we compute the pose 
at vc in VS \ and VS2 using the technique explained in Sections 2.2 and 2.3. We 
then treat vc as if it were a key viewpoint and repeat the procedure explained in 
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the first step. Once the camera transitions into the new view sphere, vc ceases to 
be a key viewpoint and the animation proceeds as usual. 

Fig. 5.7. Camera 1 (in green) generates the green character, Camera 2 (in red) generates the 
red character. Each view sphere generates two character poses in response to the two cameras 
(see colour insert). 

Hence, once we are able to transition smoothly across the view spheres, we can 
then generate *P\ and P2 easily. Then the novel animation can be synthesized accord­
ing to Equation (5.3). We, however, still need to define the compositing method. 

5.2.3 Rendering the animation 

To get the desired animation, we plan the movement of two cameras across the view 
spheres. Each of the cameras will generate one of our characters respectively (see 
Fig. 5.7). Note that both the cameras cross over from one view sphere to another in 
the center view sphere while maintaining a smooth camera path. 

We composite the poses in 2D image space while transferring them to the frame-
buffer, to get one coherent dance sequence. We show a sequence of frames from our 
final animation in Fig. 5.8. The characters in green and red are our two dancers. 

Fig. 5.8. Frames from the synthesized animation (see colour insert). 
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5.3 Animating Multiple Characters from Multiple View Spaces 

The reuse strategy presented in Section 5.2 uses multiple instances of the same char­
acter, each from the same view space. We want to further expand this idea and look 
at animating groups of distinct characters together. 

Consider that we have N distinct characters and we have constructed a view 
space for each. Then we can generate the distinct animations, Pr, with 1 < r < N. 
The generated P/s are distinct even if the path traced on each view space is the same 
because the character in each view space is distinct. Each Pr is an ordered set of nr 

frames and is given by Pr = {pj. : 1 < i < nr}. A new animation of a group of these 
distinct characters can be constructed as 

N N 

Q = K 0 qf > : df = P? V *, 1< * < mhi(/i/)}, (5.4) 

where the @ operator indicates that N poses are being composed together to form 
the synthesized animation frame. 

We now look at the problem of how to control the paths we want to trace on the 
N distinct view spaces. Let a camera be associated with every view space. We call 
this camera the local camera for the corresponding view space. Let the path traced 
by this camera be Pr(vr, dr, t_r). We define a single global camera and the path traced 
by this camera as *$. This path ty is the trajectory of the global camera in 3D space, 
defined in the global coordinate system. It is not a path on any of the view spaces. 

We can define 3. path-mapping function fr, Pr = / r0P), 1 < r < N. The function 
fr maps the global path to the corresponding local path on the view space. The func­
tion fr is a coordinate system transfer function from the global coordinate system to 
the local coordinate system of each view space. In order to create the novel anima­
tion, the animator has to plan the camera trajectory only for the global camera and 
define the various / r ' s . Then moving the global camera along ^ will cause each of the 
local cameras to move along the corresponding Pr on their respective view spaces. 
This will generate the distinct animations, P/s. These can be composited together 
to generate the final animation (see Fig. 5.9). A straightforward choice for the com­
positing method is to render the various poses as they appear when viewed through 
the global camera. This technique automatically composites them in the rendered 
frame. The animator, however, can use any other compositing method as required 
for the animation. Before starting the animation process, the animator has to place 
the various characters in the global coordinate system as a part of global scene defi­
nition. Hence, the animator already knows the coordinate system transfer function gr 

from the global coordinate system to the local coordinate system of each character. 
The mapping from the local coordinate system of the character to the coordinate sys­
tem of the view space hr is easily recovered during view space construction. Thus, 
we have fr = gr° K (where o represents function composition). 

We have used this reuse technique to animate a crowd of characters in the Mexi­
can Wave animation. In this example, the same character is replicated many times to 
generate a crowd [shown in Fig. 5.10(b)]. Each character has a local view space as 
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Fig. 5.9. Animating multiple characters from multiple view spaces. 

(a) (h) ( u 

Fig. 5.10. The Mexican Wave animation (see colour insert). 

shown in Fig. 5.10(a). The local key viewpoints are shown in blue and red, while the 
current local camera is shown in green. Moving this local camera on the path shown 
(in green) causes the single character's pose to change as it is supposed to change 
during the crowd animation. The movement of the global camera is mapped to each 
of these view spaces to move the corresponding local cameras, which generates the 
final animation. The path of the global camera and current look-at is shown in green 
in Fig. 5.10(b). Note that the crest of the Mexican wave is in front of the current 
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camera look-at. The amplitude of the wave decreases as one moves away from the 
current look-at vector of the global camera in either direction. This is because the 
mapping function has been designed to curtail the wave at the boundary of the cur­
rent view frustum. We also perform conservative view culling to efficiently render 
the crowd. One of the frames of the final animation is shown in Fig. 5.10(c). The 
animation of a single character due to camera movement in a local view space, the 
generation of the crowd, and its animation due to the global camera movement are 
shown in a video. 

In this example, it is not difficult to find the path-mapping function, fr, that will 
generate the wave in the crowd for a specific movement of the global camera. Fig­
ure 5.11 shows the position of the local cameras in their respective local view spaces 
for a given position of the global camera. The mapping ensures that the local cam­
eras in local view spaces outside the bounds of the current view frustum do not move. 
This mapping function can be intuitively constructed. For a general case, however, 
designing a path-mapping function to get a desired animation may not always be 
easy. 

Path of 
global camera 

Current 
pose of 
individual 
characters 

Fig. 5.11. Mapping the movement of global camera to the local cameras. 

5.4 Animating Different Parts of a Single Character from a Single 
View Space 

In the previous sections, we looked at the problem of synthesizing a novel animation 
with multiple characters using view-dependent variations of one or many characters. 
Now we draw inspiration from cubist paintings, which portray the parts of the same 
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character in a painting from different perspectives. Paintings by Pablo Picasso, for 
example, the Femme Nue Accroupie(l959), typify this style of compositing of dif­
ferent views of different parts of a scene into a single projection. They are a perfect 
example of a scene that can be visually thought of as broken into disjoint parts that 
are viewed from different perspectives and then patched back together. Similarly, we 
want to generate a new animation where different parts of the same character are con­
trolled by separate cameras. All the cameras move on the same view space. The final 
animation will have the character with each separately animated body part blended 
together. 

In order to do this we consider a pose, p, to be made up of a union of M body 
parts, bM, i.e., p = (j£ii &«• We assume there is no overlap between the body parts, 
i.e., they are distinct and mutually exclusive. Now, we associate a camera Cu with 
a body part bu. Each camera traces a path, ^w(vM,^M^M), on the view space. The 
synthesized animation of n frames, Q, is then given by 

Q = [j : q*' = p1" : 1 < i < w} . (5.5) 

At any point pu on a camera path, the configuration of the corresponding body 
part, bM, is computed by using a process analogous to pose computation at pu for 
a normal view-dependent animation as given in Section 2.2. We can also associate 
other parameters, e.g., scaling of each body part, with their respective cameras. We 
can then vary these parameters when their corresponding cameras move. The various 
body parts are then composited together to form the final pose (see Fig. 5.12). The 
compositing method used is the animator's prerogative. 

We present two variations of this reuse technique as examples. In the first, dif­
ferent body parts are viewed from their respective cameras, and the views are com­
posited in 2D image space to generate a multiperspective image. This compositing 
technique is similar to the one given by Coleman and Singh [29]. We associate six 
body cameras, one each with the head, torso, two arms, and two legs. We explicitly 
associate the cameras with the bones of the embedded skeleton for each body part. 
This automatically groups the mesh vertices into various body parts, as each mesh 
vertex is uniquely contained in a control lattice cell, which in turn is associated to 
exactly one bone of the embedded skeleton. We also associate scaling parameters of 
the various body parts with the position of their respective body cameras. Since each 
body camera is at a different position, each body part is scaled differently, in addition 
to having a different perspective. We then composite the view from each to get the 
final image. In Fig. 5.13(a), the head of the character is seen from the right, the torso 
from the front, the left hand from the top, the right hand from the left bottom, the left 
foot from the front, while the right foot is seen from the right side. In Fig. 5.13(b), 
the head of the character is seen from the left bottom, the torso from the right top, the 
left hand from the front, the right hand from the top, the left foot from the right side, 
and the right foot from the left side. This may be thought of as the view-dependent 
analogue of cubist paintings. 

In the second variation, we again associate six body cameras with the various 
body parts. The composition of the body parts is, however, done in object space, 
i.e., in 3D. This is done by taking one model of the character and posing the various 
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yl New animation 
with different 
parts of the 
character 
controlled by 
different cameras 

Fig. 5.12. Animating different parts of a single character from a single view space. 

(a) (b) 

Fig. 5.13. Two examples of multiperspective images. 
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body parts as per the associated camera. The connectivity of the body parts is not 
disturbed, and hence they can be blended in object space. The animation is rendered 
from the viewpoint of a master camera. The body cameras follow the movement of 
the master camera. Figure 5.14 shows frames from the three animations we have 
generated using this technique, each with a different set of scaling parameters for the 
various body parts. In the first case [see Fig. 5.14(a)] there is no scaling applied to 
each body part; so as the master camera moves, the various body parts are posed as 
per the key views and the effect is similar to a normal view-dependent animation. In 
the second case [see Fig. 5.14(b)] scaling applied to each body part is such that it 
exaggerates the perspective effect, i.e., the part that is closer to the camera appears 
very big, while the part that is farther away appears very small. This effect can be 
seen in the legs and the head as the camera moves from below the character to the 
top. As the camera moves, the scaling associated with the body parts changes to 
maintain the exaggerated perspective effect. The hands and the torso are not scaled. 
In the third case [see Fig. 5.14(c)], the scaling applied counters the perspective effect, 
i.e., body parts that are farther appear larger. 

(a) (b) (c) 

Fig. 5.14. Compositing in object space and rendering from the master camera. 

As an example of the elegance of our reuse technique, we stylize the Hugo's 
High Jump animation by associating different cameras with different body parts of 
the character. Sample frames from this animation are shown in Fig. 5.15. In this 
animation, as Hugo jumps, his limbs stretch and his head becomes larger. This is 
made possible by the scaling parameters associated with the various moving body 
cameras. As Hugo falls down, he resumes his original proportions. In this example 
also, the body cameras follow the movement of one master camera. 

5.5 Chapter Summary 

In this chapter, we explored the different possibilities in reusing view-dependent an­
imations to synthesize novel animations. We discussed the state of the art of stylized 
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Fig. 5.15. Frames from the stylized Hugo's High Jump animation. 

animation. We find a large body of literature on nonphotorealistic animation with 
emphasis on creating particular rendering styles like pen and ink, charcoal drawing, 
and impressionist paintings. Considerable work has been done in the area of creating 
nonphotorealistic versions of still images and videos. We also review the work done 
on animation synthesis from motion databases. Many of these algorithms, like mo­
tion graphs, search a database of recorded motion and generate a smooth sequence 
comprising short animation clips. The graph encodes the transition from one clip to 
another, and the search is pruned using various constraints and heuristics. 

We then presented our techniques for stylistic reuse of view-dependent anima­
tions. We introduced three novel reuse strategies. First, we showed how to animate 
multiple characters from the same view space. Next, we showed how to animate 
multiple characters from multiple view spaces. We used this technique to animate 
a crowd of characters. We have drawn inspiration from cubist paintings and created 
their view-dependent analogues by using different cameras to control various body 
parts of the same character. Thus, we have shown that reusing view-dependent ani­
mation is possible using the framework and it can be used to synthesize a variety of 
interesting stylized animations. We demonstrated the efficacy of the framework for 
stylistic reuse by generating complex animations. 

We believe that the stylistic reuse of view-dependent animations can lead to the 
creation of many interesting animations easily and efficiently. 
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Discussion and Future Directions 

6.1 Discussion 

In this book, we have presented a framework for creating moving-camera character 
animations. It is often arduous for the animator to manually stage a character's action 
when the point of view changes in each frame. We have shown that view-dependent 
animation offers a natural solution to this problem. Since in view-dependent ani­
mation the character's action depends on the view, the camera and character pose 
association, once specified by the animator, is maintained throughout the animation. 
In the course of designing a general framework that encapsulates the rich diversity 
offered by moving-camera animations, we have solved many challenging problems. 

We present a concise summary of the features of the framework for view-
dependent character animation. 

1. We have formulated the concept of a view space of key views and associated 
key character poses. This provides a formal theoretical basis for representing 
view-dependent animations and forms the core of the framework. 
• The view space representation captures all the information about the views 

and character poses efficiently and concisely. 
• The animator can trace camera paths on the view space, and the correspond­

ing animation is generated in real time. Simple interpolation schemes are 
used to generate in-between character poses from the space of key poses 
while the rendering camera moves on the path specified by the animator. 

2. The view space embodies all the information contained in the various view (or 
camera) parameters. Robust computer vision techniques have been used to esti­
mate these parameters from different types of inputs. 
• The algorithms used to recover cameras from sketches are numerically ro­

bust and efficient. We are able to recover a wide variety of cameras, ranging 
from the orthographic to the full projective, from a sketch. This allows us to 
reproduce the viewpoint intended in the sketch more faithfully in the anima­
tion. The algorithms are resilient to many types of sketches, which can be 
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mannequin sketches, stick-figure sketches, or more accurate sketches of the 
character. 

• The algorithm used to track the cameras in video input, is stable. The cam­
eras recovered by the tracker generate a view space. We show that for a given 
video we get a single camera path on this view space, which reproduces the 
camera movement in the video. 

3. We have presented a pipeline to extract cameras and character poses and generate 
a view space from sketches. In order to pose the character from a sketch, we 
have developed two novel view-dependent algorithms. These allow us to embed 
a multilayered deformation system into a view-dependent setting and integrate 
it with computer vision techniques. 
• The view-dependent posing algorithm poses the skeleton embedded inside 

the mesh model of the character in such a manner that the pose matches the 
sketched pose when viewed through the recovered camera. The algorithm 
works at interactive rates and provides instant feedback to the animator. The 
animator also has the option of using IK directly to manually fine tune the 
pose recovered by the algorithm. 

• The view-dependent deformation algorithm deforms the mesh model of the 
3D character such that the silhouette of the mesh model matches the outline 
of the sketched character when viewed through the recovered camera. The 
algorithm uses DFFD as a backend to displace the mesh vertices. The solu­
tion is pruned space using projection constraints derived from the recovered 
camera. 

• We chose to use IK and DFFD and have modified and integrated them into 
the framework. They are sufficient to demonstrate the viability of the frame­
work, while being reasonably efficient at the same time. However, we would 
like to point out that other alternatives to these techniques exist in recent liter­
ature (see Sections. 3.5.1 and 3.5.4). These can be suitably adapted to replace 
IK and DFFD without affecting the view-dependent posing and deformation 
algorithms. The implementation of our pipeline in this book should be con­
sidered as a concept demonstration. 

4. Multimodal authoring of view-dependent animations is a challenging problem. 
We have presented a solution to this problem and illustrated it using interesting 
examples. 
• We develop a pipeline to create a view space from multimodal inputs. We 

demonstrate this process for video input and present arguments to show that 
similar pipelines can be constructed for other input types. 

• The view space serves as the common ground for all types of inputs and al­
lows the animator to mix the information contained in them to create the 
desired animation. We have presented an example of generating a view-
dependent animation using a video sequence as input. 

• We present an example that demonstrates how it is possible to combine 
sketch- and video-based inputs for creating a moving-camera character ani­
mation. The camera path is extracted from a video and transplanted onto a 
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view space created from sketches. We have developed an algorithm for au­
tomatic transplantation of the camera path by registering the corresponding 
coordinate systems with each other. We can augment the view space with 
new key viewpoints and poses. It is also possible to augment the camera 
path itself by adding new path segments and generate a seamlessly blended 
animation from the various path segments. 

5. The framework is not meant to replace the complete animation pipeline, but 
rather complement it. View-dependent animation can be seamlessly blended 
with non-view-dependent animation, and we demonstrate this in many exam­
ples. 

6. Although we have developed algorithms for automating most of the stages of our 
work as far as possible, there is still a manual fall-back option for each stage to 
give the animator adequate control over the animation. The animator can decide 
to manually tune the output at any stage if so desired. 

7. The ability to understand and explore view-dependent animation using the 
framework gives us an insight into the various applications of view-dependent 
animation. We formalize the concept of stylistic reuse of view-dependent anima­
tions in terms of our framework. 
• We define a synthesized animation as a combination of the animations gen­

erated by the view-dependent instances of a single character. The different 
instances appear as multiple characters in the final animation. An example of 
this formulation generates a complex ballet animation, which has two view-
dependent instances of the same character performing different, yet synchro­
nized, ballet moves. 

• We also formulate two other possible reuse strategies. In the first, we propose 
that it is possible to generalize our technique to encompass view-dependent 
animations of a group of different characters. For the second, we have drawn 
inspiration from cubist paintings and created their view-dependent analogues 
by using different cameras to control various body parts of the same charac­
ter. 

8. We have implemented the following components of this framework: the inverse 
kinematics and direct free-form deformation engines, exponential map param­
eterization of rotations, joint reach cones, Kalman-filter-based contour tracker, 
camera recovery, and character posing algorithms. We would like to integrate 
the view-dependent character animation work flow into a commercial anima­
tion production pipeline, and have professional animation artists evaluate it for 
further improvements. 

We have shown that view-dependent animation is an easy, efficient, and intu­
itive solution for creating moving-camera character animation. We, however, feel 
that there is a lot of potential in the method, which can be harnessed to solve a vari­
ety of other problems. In the next section, we discuss some interesting problems for 
future work. 
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6.2 Future Directions 

We discuss some interesting problems which can be solved using our framework and 
methods for extending or improving it. 

Integrating motion capture and multiple video streams: We have already argued 
theoretically that the framework can represent information contained in many differ­
ent forms of input using the view space. It would be interesting to practically imple­
ment these alternate pipelines, to experiment with the myriad, interesting animations 
that can then be generated. 

Optical motion capture setups have camera information because all the cameras 
are calibrated. The poses of the characters are recovered from the motion capture 
data. Since the character pose and camera association is inherent to the motion cap­
ture setup, it naturally maps to a view space. Similarly, multiple synchronized video 
streams can be used to recover 3D pose information of characters. Each of these 
videos can be mapped onto a different path on a view space. 

Once a view space has been created, the framework offers tremendous creative 
freedom to the animator, as having one coherent representation for all the informa­
tion from these myriad sources allows the animator to mix and match them very 
easily. 

View-dependent animation of multiple characters: We have demonstrated our 
techniques using many examples. All these, however, feature a single animated char­
acter. The view space formalism is not restricted to a solitary character. Multiple 
characters can be associated with a key view in a view space. Tracing a camera path 
will then animate all these characters together. Another way to extend this formalism 
is to associate the configuration of the complete scene (i.e., all objects in the scene) 
with the key views (i.e., adopt a scene-centric approach rather than a character-
centric one). Then, moving the camera would result in an animation with one scene 
configuration changing into another. 

View-dependent timing of animation: In this work, we have not explicitly dealt 
with the issue of animation timing. The timing in our animations is derived from the 
sampling of the camera positions on the camera path. Timing, however, is one of 
the very fundamental principles of animation. It is often seen that timing in close-up 
shots is different from the timing in medium- or long-range shots. It can be argued 
that in a close-up shot, an animator wants to show some detail, and hence, the close-
up view is timed slower. A sweeping shot of a landscape showing the character run­
ning at a high speed from faraway will have timing different from a zoom-in shot that 
follows the character closely during the run. Hence, we can associate the timing of an 
animation with the camera in such cases. This is the motivation behind exploring a 
view-dependent timing strategy. If every point of the view space can be painted with 
a timing attribute, then the rendering camera will automatically have timing informa­
tion associated with it. The challenge, however, is to develop an intuitive interface 
for the animator to specify this timing information on the view space. It will also be 
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necessary to resolve timing inconsistencies that may arise due to arbitrary camera 
paths on the view space. 

View-dependent lighting and texture: We dealt with 3D character animation in 
this entire work. Current animation productions, however, use a hybrid of 2D and 3D 
techniques for character animation. Cooper describes [31] how animators at Dream­
Works used a traditionally drawn 2D animated horse for the primary character in 
the movie Spirit: Stallion of the Cimarron [9] and merged it seamlessly into beau­
tiful 3D sets and camera moves. The lighting and tonal texture, in both 2D and 3D, 
are dependent on the final rendering camera. Hence, they have a "view-dependence" 
property, which can be modeled using the framework. 

The above mentioned directions of future work are some of the ways in which 
the framework can be used and extended. View dependence as a property, however, 
has been exploited in various areas. Some of these include creating and rendering 
multiresolution and progressive meshes [62], generating levels of detail (LOD) for 
complex scenes [94], fast displacement mapping [133], and point-based nonphoto-
realistic rendering [33]. All of these can be associated with the view space, which 
essentially embodies the concept of view dependence. These open many interesting 
and different directions for future work. 
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Camera Models and Computation of the Camera 
Matrix 

A camera is a mapping between the 3D world (object space) and a 2D image. Here 
we present in brief a few camera models which are matrices with particular properties 
that represent the camera mapping. We also present two algorithms to compute the 
projective and affine cameras given a set of point correspondences. 

A.l The Pinhole Camera Model 

Consider a central projection of points in space onto a plane. Let the center of pro­
jection be the origin of a Euclidean coordinate system, and consider the plane z = f, 
which is called the image plane or focal plane (see Fig. A.l). Under this pinhole 
camera model, a point X = (X, K,Z)T is mapped to a point x = (fX/Z,fY/Z,f)T on 
the image plane. Then if the world and image points are represented by homogeneous 
vectors, the central projection is expressed as a linear mapping given by 
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[ 1 0 J 

(x) 
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lii 
Equation (A.l) assumed that the origin of the camera coordinate system is at 

the origin of the world coordinate system. It also assumed that the world Z axis is 
the principal axis of the camera. In general, points in space are expressed in terms 
of a different Euclidean coordinate frame than the camera coordinate system. These 
world and the camera coordinate systems are related via a rotation, R, and a transla­
tion, t. In Equation (A.l) we also assumed the image plane origin coincides with the 
principal point. This need not be the case always. In the most general case, a 3 x 4 
camera projection matrix, P, can be decomposed as 

P = K[R|t] . (A.2) 

Here the matrix K maps the points from the camera coordinate system to the image 
coordinate system. 
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Fig. A.l. Pinhole camera geometry: C is the camera center and p the principal point. Here the 
camera center is placed at the coordinate origin. 

A.2 Anatomy of the Projective Camera 

A general projective camera may be decomposed into blocks according to P = 
[M|p4], where M is a 3 x 3 matrix. We now have the following properties for a 
projective camera: 

Camera center: The camera center is the right null space C of P, i.e., PC = 0. For 
finite cameras (M is not singular) we get 
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C = rn (A.3) 

Column points: For / = 1,2,3, the column vectors p, are vanishing points in the 
image, corresponding to the X, Y, and Z axes, respectively. Column P4 is the 
image of the coordinate origin. 

Principal plane: The principal plane of the camera is P3, the last row of P. 
Axis planes: The planes P1 and P2 (the first and the second rows of P) represent 

planes in space through the camera center, corresponding to points that map to 
the image lines x = 0 and v = 0, respectively. 

Principal point: The image point Xo = Mm3 is the principal point of the camera 
where m3 is the third row of M. 

Principal ray: The principal ray (axis) of the camera is the ray passing through the 
camera center C with the direction m3 . The principal axis vector v = det(M)m3 

is directed toward the front of the camera, where det(M) is the determinant of 
M. 

A.3 Cameras at Infinity 

An affine camera is one that has a camera matrix P in which the last row P3 T is of 
the form (0,0,0,1). For such cameras, M is singular. The camera center C is given 
by 

- ( ! ) • 
(A.4) 

where d is the null 3-vector of M, i.e., Md = 0. The vector d also gives the direction 
of parallel projection. 

There exists a hierarchy of camera models representing progressively more gen­
eral cases of parallel projection. These are 

Orthographic projection: An orthographic camera has 5 degrees of freedom, namely, 
three parameters describing the rotation matrix R, plus the two offset parameters 
t\ and t2. The first two rows of the matrix are orthogonal and of unit norm, and 
f3 = l. 
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(A.5) 

Scaled orthographic projection: A scaled orthographic projection is an orthographic 
projection followed by isotropic scaling, and is given by 

P = 
\k ] 
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(A.6) 

It has 6 degrees of freedom. The first two rows are orthogonal and of equal norm. 
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Weak perspective projection: Here the scale factors in the two axial directions are 
not equal. Such a camera matrix is of the form 

P = av 

1 

r l T tx 

r 2 T t2 

0 T 1 
(A.7) 

It has 7 degrees of freedom, and the first two rows of the matrix are orthogonal. 
Affine camera: The general affine camera has an additional skew term, and is of the 

form 
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m2\ m22 m23 h 
0 0 0 1 J 

(A.8) 

A.4 Computation of the Projective Camera Matrix 

Given a number of point correspondences X, <-> X/ between 3D points X; and 2D 
image points X/, we want to find a 3 x 4 camera matrix P such that x,- = PX/ for all /. 
If the 7-th row of the matrix P is denoted by P J T , then we can write 

PX/ = 

fP lTX;^ 
>2TX, 

I P 3 T x I 
(A.9) 

Writing x, = (Xi,yi, w,)T, the cross product x, x PX/ can be written explicitly as 

xt x PX/ 
(yi1#TXi-wiV

2TXi
>\ 

W / P 1 T X / - J C / P 3 T X / 

U/P2TX/-y/PlTX/ 
(A. 10) 

Since P^TX/ = XjFj for j = 1 . . . 3 and x/ x PX/ = 0, we get 

/ p i \ 

P 2 

P 3 
= 0. (A. 11) 

0T -wtXj yiXj " 
wtXj 0 T -xtXj 
-yiXj XiXj 0 T 

We may choose to use only the first two equations because the three equations of 
Equation (A. 11) are linearly dependent. From a set of n point correspondences, we 
obtain a 2n x 12 matrix A by stacking up the equations for each correspondence. The 
projection matrix P is computed by solving the set of equations Ap = 0, where p is 
the vector containing the entries of the matrix P, i.e., 

P\ Pi P3 
PA P5 Pe I • (A. 12) 
Pi Ps P9_ 

We use an algorithm called the Normalized Direct Linear Transformation(DLT) 
Algorithm (reproduced from Hartley and Zisserman [52] in Algorithm A. l ) to obtain 
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the solution. Algorithm A.l minimizes ||Ap|| subject to ||p|| = 1. The residual Ap is 
known as the algebraic error. Normalizing the data points before performing DLT 
increases the numerical accuracy of the results and also makes the algorithm invariant 
to arbitrary choices of scale and coordinate origin. The normalization is better suited 
to cases where the variation in the depth of points from the camera is relatively less. 
Since all our 3D data points lie on the character, their distribution in space is compact, 
and so normalization is the right thing to do. Hartley and Zisserman [52] discuss the 
numerical stability and error analysis of the DLT in greater detail. 

Require: Given n > 6 world to image point correspondences {X; <-» X/}. 

1 begin 
2 Normalization of X: Compute a similarity transformation S, consisting of 

a translation and scaling, that takes points X/ to a new set of points % such 
that the centroid of the points X,- is the world coordinate origin (0,0,0)T 

and their average distance from the origin is V3. 
3 Normalization of x: Similarly compute a similarity transformation T, 

consisting of a translation and scaling, that takes points X; to a new set of 
points x/ such that the centroid of the points xf- is the image coordinate 
origin (0,0)T and their average distance from the origin is V2. 

4 DLT: Form the 2n x 12 matrix A by stacking up the equations [see 
Equation (A.l 1)] for each correspondence {X/ <-> X/}. Write p for the 
vector containing the entries of the matrix P. A solution of Ap = 0, subject 
to HpH = 1, is obtained from the unit singular vector of A corresponding to 
the smallest singular value. Specifically this is the S VD of A gives 
A = UDVT with D diagonal with positive entries arranged in the 
descending order down the diagonal; then p is the last column of V. 

5 Denormalization: The camera matrix for the original, unnormalized 
coordinates is obtained from P as 

P = T'1PS. (A. 13) 

6 end 

Algorithm A.l: Normalized Direct Linear Transformation Algorithm. 

A.5 Computation of the Affine Camera Matrix 

The DLT estimation of the camera in this case minimizes ||Ap|| subject to the condi­
tion that the last row of the projection matrix P3 T = (0,0,0,1). 
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Require: Given n > 4 world to image point correspondences {X; <-> x,}. 

1 begin 
2 Normalization of X: Compute a similarity transformation S, consisting of 

a translation and scaling, that takes points X/ to a new set of points X; such 
that the centroid of the points X/ is the world coordinate origin (0,0,0)T 

and their average distance from the origin is V3. 
3 Normalization of x: Similarly compute a similarity transformation T, 

consisting of a translation and scaling, that takes points X/ to a new set of 
points x/ such that the centroid of the points x, is the image coordinate 
origin (0,0)T and their average distance from the origin is V2. 

4 Each correspondence {X; <-» X/} contributes equations 

XJ 0 T 

oT X7 (5)-(S) (A. 14) 

which are stacked into a 2 n x 8 matrix equation Agpg = b, where pg is the 
8-vector containing the first two rows of P^. 

5 The solution is obtained by the pseudoinverse of Ag 

P8=A£b (A. 15) 

andP3T = (0,0,0,1). 
6 Denormalization: The camera matrix for the original, unnormalized 

coordinates is obtained from P^ as 

P A = T - 1 P A S . (A.16) 

7 end 

Algorithm A.2: The Gold Standard Algorithm. 

Suppose all the points X/ are normalized such that X/ = (X,-, K/,Zj, 1)T and 
X; = (JC,-, v/, Zi, 1)T, and the last row of P has the affine form. Then for a single corre­
spondence we get the equation 

0T -XJ 
XJ 0 T (£)•&)-• 

These equations are stacked up and the system is solved to get an estimate the 
affine camera. Algorithm A.2 (reproduced from Hartley and Zisserman [52]) gives 
the Gold Standard Algorithm for estimating an affine camera matrix P^. Under the 
assumption of Gaussian measurement errors this algorithm returns the Maximum 
Likelihood estimate of P^. Hartley and Zisserman [52] discuss the numerical stability 
and error analysis of the Gold Standard Algorithm in greater detail. 
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The Exponential Map Parameterization of Rotations 

The primary applications of rotations in graphics are to encode orientations and de­
scribe and control the motion of rigid bodies and articulations in transformation hi­
erarchies. We use inverse kinematics for posing the skeleton embedded inside the 
character, and we want our posing algorithm to be efficient and work at interactive 
rates. For this purpose an appropriate choice of rotation parameterization is essential. 
Parameterizing rotations is problematic mainly because rotations are non-Euclidean 
in nature (traveling infinitely far in any direction will bring you back to your start­
ing point an infinite number of times). Any attempt to parameterize the entire set 
of 3-degree-of-freedom (DOF) rotations by an open subset of Euclidean space (as 
do Euler angles) will suffer from the gimbal lock, i.e., the loss of rotational degrees 
of freedom, due to singularities1 in the parameter space. Parameterizations that are 
themselves defined over non-Euclidean spaces (such as the set of unit quaternions 
embedded in R4 ) may remain singularity-free, and thus avoid the gimbal lock. Em­
ploying such parameterizations is complicated, however, since the numerical tools 
most often employed in graphics assume Euclidean parameterizations; therefore, we 
must either develop new tools whose domains are non-Euclidean or impose explicit 
constraints that distinguish the non-Euclidean parameter space from the Euclidean 
space in which it is embedded (as we must impose constraints that ensure quater­
nions retain unit length). 

Every nonzero vector in R3 has a direction and magnitude. We can associate a 
rotation with each vector by specifying the direction as an axis of rotation and the 
magnitude as the amount by which to rotate around the axis. If we augment this 
relationship by associating the zero vector with the identity rotation, the relation­
ship is continuous and is known as the exponential map [48]. Unlike the quaternion 
parameterization, this parameterization is Euclidean, so it contains singularities. In 
the following sections we present the exponential map in detail and also examine its 
strengths and limitations as a rotation parameterization. 

1 Intuitively, a singularity is a continuous subspace of the parameter space, all of whose 
elements correspond to the same rotation; thus, movement within the subspace produces 
no change in rotation. 
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B.l Exponential Maps 

The exponential map maps a vector in R3 describing the axis and magnitude of a 
3-DOF rotation to the corresponding rotation. There are many different formulations 
of the exponential map. There are, however, several advantages to using a map from 
R3 to §3 and using standard quaternion-to-matrix formulae for conversion to §0(3). 
Here R3 is the 3D Euclidean space. §3 is the underlying set of the subgroup of unit-
length quaternions. SO(3) is the group of all 3x3 matrices whose columns are of unit 
length and are mutually orthogonal, under the operation of matrix multiplication. 

The advantages of not directly mapping to §0(3) are that the inverse of the ex­
ponential map, the log map from S3 to R3, is much simpler than the log map from 
§0(3) to R3 and that it is easier to convert to and from §3 when we need to perform 
optimal interpolation of rotations using quaternions. 

We can formulate an exponential map from R3 to §3 as follows: 

([0,0,0,1]T ifv = 0 , 
l2m=o(5v)m = [sin(i0)*,cos(i0)]T if v * 0 , U 5 ' u 

where 6 = ||v|| and v = v/||v||, which maps v to a unit quaternion representing a 
rotation of 6 (i.e., ||v||) about v, where (\\)m is computed using quaternion multipli­
cation. The right-hand side of Equation (B.l) is exactly the same as is used to create 
a unit quaternion from a (unit) axis-angle description of a rotation. The exponential 
map, however, allows us to encode both the magnitude and axis of rotation into a 
single 3-vector. 

The only problem with this particular formulation is that calculating v = v/||v||, 
as ||v|| goes to zero, becomes numerically unstable. We can compute the exponential 
map robustly in the neighbourhood of the origin by rearranging the above formula. 
Let 

v T sin(±0) 
q = e* = [sin(i0)-,cos(i0)]T = [ — ^ v , c o s ( i 0 ) ] T . (B.2) 

Hence, we reorganize the problematic term so that instead of computing v/||v|| 
(i.e., v/0), we compute sin(^0)/0. This is because sin(^0)/0 = \sinc(\6) and sine, 
the sine cardinal function as given by Equation (B.3), is known to be computable 
and continuous at and around zero. 

. . . . / I for0 = O, 
sincW = \ m otherwise. ( B ' 3 ) 

Since sine is not included in standard math libraries, we compute it using the 
Taylor expansion of sin as 

sin(lfl) = l(e (f)^_(f£ 
6 6{2 + 3! 5! + -

1 62 6* 
= 2 + 4 8 " 2 ^ ! + - ( B - 4 ) 
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Hence, we see that the term is well-defined and that evaluating the entire infinite 
series would give us the exact value. But as 6 —> 0, each successive term is smaller 
than the last, and terms are alternately added and subtracted; so if we approximate 
the true value by the first n terms, the error is no greater than the magnitude of the 
(n+ l)st term. In fact, since machine precision is limited, we can evaluate the function 
with no numerical error. When 6 < ^machine precision, use just the first two terms 
of the expansion 

!^Ll+*. (B.5) 
0 2 48 V } 

Otherwise, we perform the actual sin computation and division by 6. Since all the 
dropped terms involve factors of 6, the approximation and actual function agree at 
(9 = 0. 

B.2 Derivatives with Respect to the Exponential Maps 

In order to compute the Jacobian of a node in a transformation hierarchy with respect 
to all of the end effectors below it in the hierarchy, we have to compute the partial 
derivatives of the rotation matrix. We are, in essence, reparameterizing quaternions; 
hence, we can compute the derivatives of R (the rotation matrix) with respect to its 
exponential map parameters by applying the chain rule. We compute dR/d\ as 

dR dR dq 
o\ dq o\ 

Since we already know how to compute the partial derivatives dR/<9q, the only 
new quantities we need are the 12 partial derivatives of the quaternion with respect 
to its exponential map parameters (i.e., dq/d\). To express the similarity in the form 
of the 12 derivatives, we let / range over the three components of q that make up its 
vector part and n range over the components of v. The formulae for computing the 
partial derivatives of q with respect to v are, in the usual case where 6 » 0 

dq^ __]_ sin(^fl) 
dvn " 2Vn 0 ' 
o (\ ocosUfl) 2 s i n ( ^ ) sin(±0) . r . 

OSL = J ivn^r- ~ rt-ih + -t-lf l = n • rB 7̂  

where the quaternion q is given by [qx, qy, qz, qw]T. In the neighbourhood of 6 —> 0, 
we can again replace sin and cos by their Taylor series expansions and, after simplify­
ing, discard all terms with powers 04 or greater in the numerator. If TSinc(#) = \ - |g, 
then the partial derivatives of q have the form 

^ = - iv„TSinc(0) , 
dv„ 2 
£ ^ = { 3 ( | i - l ) + TSinc(0) if/= n, ( B g ) 
dv" ( l K | i - l ) + TSinc(0)if/*n. 
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B.3 Strengths and Limitations of the Exponential Map 

No single parameterization of rotations is best for all applications (in our own sys­
tem for view-dependent animation we use the exponential map and Euler angles for 
inverse kinematics, quaternions for interpolation, and rotation matrices for transfor­
mation hierarchies). The exponential map computation of 3- and 2-DOF rotations, 
however, is very robust and outperforms other parameterizations for inverse kine­
matics computations. We conclude with a summary of the main strengths and weak­
nesses of the exponential map. 

Strengths: 

• The exponential map remains free from gimbal lock over a range of axis-angle 
rotations up to magnitude 2/r, which is suitable for any control or optimization 
algorithm that operates at single instants of time, provided time marches forward 
in small steps. 

• The exponential map uses three parameters to parameterize §0(3), which means 
- There is no need for normalization after integrating ordinary differential 

equations. 
- There is no danger of falling out of a meaningful subspace (like falling off S3 

in R4 ), so we do not need explicit constraints. 
- Smaller dimension state vectors combine with the previous point to result in 

faster performance. 
• Interpolation using ordinary cubic splines is possible and may often produce vi­

sually acceptable results provided successive key frames are not too distant from 
each other in R3. 

Limitations: 

• There is no simple formula for combining rotations in R3 akin to quaternion 
multiplication in S3 or matrix multiplication in SO(3). 
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Spherical Joint Limits with Reach Cones 

The task of animating humans and animals is greatly aided by automatic constraints, 
such as joint limits and collision detection, which provide natural restrictions on re­
alistic motion. Such constraints are important in interactive placement, as then the 
user does not have to recognize unrealistic positions visually. They are essential in 
more automated methods, such as physical simulation, inverse kinematics, and mo­
tion capture from monocular video. Generally, articulated body models used in com­
puter graphics model joints with more than 1-DOF as a sequence of 1-DOF joints 
specified as Euler angles. The obvious way to specify a range of movement for 1-
DOF hinge joints is to give a minimum and maximum value in degrees. Joint limits 
on 2- or 3-DOF joints then become ranges around each single axis. If the longitudi­
nal axis of a segment distal to the joint is the z axis, a 2-DOF universal joint allows 
rotation about the x and v axes. If the joint also allows longitudinal z axis rotation, 
it is a 3-DOF ball-and-socket joint. Single-axis range specification is inadequate for 
such joints. 

A more natural specification, sometimes called a joint sinus cone, has been used 
in biomechanics, simulation, and computer graphics. Here the range of motion is de­
scribed as an irregular cone, defined by a cyclical sequence of points on the sphere 
that represents free universal movement. Wilhelms and Van Gelder [137] refer to 
such limits as reach cones. They describe a new method for specifying, recognizing 
inclusion in, and intersecting reach cones. We have used their techniques for speci­
fying and enforcing joint limits in inverse kinematics (see Section 3.5.1). 

C.l Defining Reach Cones 

& joint is an articulation between a parent segment and child segment of a tree struc­
tured articulated body. The end of the segment closest to the root of the tree is called 
proximal and the other end is called distal. The parent segment is said to be proximal 
to the joint and the child segment is said to be distal. When not otherwise qualified, 
the term segment should be understood to mean the segment distal to the joint under 
discussion, i.e., the child segment. Each segment's longitudinal axis is considered to 



116 C Spherical Joint Limits with Reach Cones 

be a (bounded) straight line segment originating at the joint with its parent segment. 
Henceforth, we refer to the segment's longitudinal axis as the longitudinal segment 
axis or as the longitudinal axis. 

Formally, a cone is a set of rays starting at the origin. These rays can be defined 
by set of points on a sphere centered at the origin. Without any joint limit, the distal 
end of the segment might be anywhere on this sphere. With joint limits, the set of 
points that can actually be occupied by the distal end represents, or defines, the sinus 
or reach cone. Alternatively, the intersection of the sinus cone with this sphere de­
fines the set of points that can be occupied by the distal end of the segment. Spherical 
joint limits are specified as a reach cone inscribed on a sphere of radius one, centered 
at the joint, together with limits on rotation about the longitudinal axis, that may vary 
throughout the reach cone. The reach cone is specified by a spherical polygon, called 
the reach cone polygon. The vertices of this spherical polygon are a series of bound­
ary points on this unit sphere, and great-circle arcs on the sphere form its edges. 
Points inside or on the reach-cone polygon are considered to be within the reach 
cone. Reach cones are defined in the default coordinate frame of the segment distal 
to the joint. They do not move about with state rotations of this segment. Detection of 
allowable positions in the reach cone is done by testing whether the longitudinal seg­
ment axis intersects the unit sphere inside or outside the reach cone polygon. At each 
vertex, limits on rotation about the longitudinal segment axis (also called twist) may 
be specified by maximum and minimum angles. Limits on the twist at any position 
in the reach cone are defined by an interpolant of these values. This capability is im­
portant because it has been found that the range of motion for longitudinal rotations 
is a function of the direction of the longitudinal axis [134]. 
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Segment 
^^ Outside 

^V^""^^ the Reach Cone 

Fig. C.l. A reach cone polygon with five boundary points and a visible point. 

It is mandatory for the reach cone polygon to have a visible point, that is, a point 
that can be "seen" by all of the boundary points in the sense that a great-circle arc 
(or line segment) joining the boundary point with the visible point lies entirely inside 
the reach cone (see Fig. C.l). 
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C.2 Detecting Reach Cone Inclusion 

Suppose a reach cone polygon has been defined with origin O, visible point V, and 
boundary points P; for / = 0 , . . . , n - 1. The points are treated as 3D vectors from the 
origin, and arithmetic on indexes is understood to be modulo n. 

Observe that for each /, the four points (O, V, P/, P/+i) define a tetrahedron. The 
order of the points imparts an orientation to the tetrahedron. These n tetrahedra also 
generate the reach cone and so can be used as an alternative representation. The 
volume of an oriented tetrahedron with one point at the origin is given by the triple 
scalar product expression as 

vo\(0,a,b,c) = - axb-c . (C.l) 
6 

The visible point is properly positioned with respect to the boundary points if and 
only if each of the n oriented tetrahedra has positive volume; i.e., 

VxPrPi+l>0 for 0 < / < « - l . (C.2) 

We consider the problem of deciding whether a specified vector L is in the reach 
cone. The vector L is the vector along the segment whose inclusion is being tested. L 
is in the reach cone if and only if L passes through one of the n tetrahedra that define 
the reach cone. Also, L passes through the tetrahedron (O, V, Pi, P;+i) if and only if 
each of the three oriented tetrahedra, (O, V, Ph L), (O, Ph Pi+\, L), and (O, Pi+U V, L) 
has nonnegative volume, using Equation (C.l). 

Fig. C.2. A reach cone with five boundary points. Slice planes 5/ and Si+\ and the boundary 
plane defined by 0, Ph Pi+{ enclose the longitudinal segment axis vector L. 
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Another way to view this is to consider the plane defined by O, V, Pt, which has 
a normal vector (not necessarily unit length) V x Pt. If L is on the same side of the 
plane as this normal vector points, then V x Pt • L = 0. The plane defined by 0, V, Pi 
is called a radial slice plane and is denoted by 5/ (see Fig. C.2). Similarly, for L to 
pass through the tetrahedron (0, V, Pi9 Pi+\) it is necessary that V x P;+i • L = 0 and 
Pi x Pi+] - L = 0. Note that the cross products depend on the boundary points and 
visible point, but not on L, so they can be computed just once when the reach cone 
is specified: 

Si = VxPi9 

Bi = Pi x PM . (C.3) 

The algorithm to decide whether L is in the reach cone is summarized in Algo­
rithm C.l. 

Require: Given a reach cone with origin 0, visible point V, and boundary 
points Pi for / = 0 , . . . , n - 1. The segment to be tested for inclusion 
is given as a vector L. 

1 begin 
2 Find the / such that pt = Si • L > 0 and pi+\ = Si+\ • L < 0. There is 

exactly one such i because the radial slices (as half planes) partition the 
sphere. We start with the slice in which the axis was located previously 
and search for the required /. In the worst case, this step takes n 
dot-product operations, since the cross products are stored. We can speed 
this up by doing a binary search on the radial slice planes. 

3 If v/ = Bi • L > 0, then L is in the reach cone; otherwise, it is not. 
4 end 

Algorithm C.l: Reach cone inclusion testing algorithm. 

C.3 Calculating a Boundary Position 

When the segment moves from a valid position in reach cone, to a position outside 
the reach cone it has to be restricted to a boundary position in order to enforce the 
joint limits. Hence we need to calculate this boundary position where the segment 
exits the reach cone. Such a boundary position can be calculated if we assume that 
the segment moves directly from the current valid position to the new invalid position 
in a straight-line path. 

Let the old position be LQ and the new position be L. The exit point will be found 
on the straight line joining LQ and L. The line will be tested against intersection with 
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the reach cone boundary planes. The boundary plane Bt is computed using Equa­
tion (C.3). The line containing L0 and L is defined as 

L(t) = Lo + KL-LQ). (C.4) 

The value of t where this line intersects the boundary plane Bt is given by 

If 0 < t < 1, an intersection has occurred. Further, we need to check that the 
intersection point lies between the slice planes Si and 5/+i, where slice plane 5/ is 
defined as 

Si = ViXPi+l . (C.6) 

C.4 Twist Limits 

For a ball-and-socket joint the limits of rotation about the longitudinal depends on 
the direction of the segment. For example, in the case of the human shoulder it has 
been found that the limits of rotation of the upper arm vary considerably between 
94 degrees and 157 degrees depending on the arm orientation. Therefore,the longi­
tudinal rotation limits are specified for each boundary point and visible point. These 
values are then interpolated to find the twist limits at any valid position inside the 
reach cone. 

Given the minimum and maximum twist rotation limits at each of the reach cone 
points including the visible point, the limits at any segment orientation L can be 
computed as follows. Find i such that pt = Si • LO , pi+\ = 5/+i • L < 0, and 
v; = Bi - L > 0, where Si and Bt are computed using Equation (C.3). Now we 
define an averaging factor s as s = pi + pt+\ + vi and weights of individual points 
of the spherical polygonal in which segment L lies as w£- = pi/s , w£- = Pi+\/s9 and 
wv = vi/s. The limits at any segment L are then computed as 

Omin(L) = Wi6min(Pi) + Wi+iOminiPi+i) + Wv6min(V) , 

0max(L) = Wi6max(Pi) + Wi+\0max(Pi+]) + wv6max(V). (C.7) 

C.5 Cyclic Order of Boundary Points 

Reach cones must be defined such that the boundary points are in counterclockwise 
order when viewed from the outside and above the visible point. This property is 
used in inclusion testing, computation of boundary position, and twist limits at any 
intermediate position inside the reach cone. The user can take care of the order of the 
points while specifying them interactively. It is also possible to compute the order 
automatically. The visible point is of great help in finding out automatic order. By 
the definition of visible point, it is a point that can be seen by all the points directly. 
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Fig. C.3. The stereographic projection provides an invertible mapping between the entire 
sphere (except for one point) and the tangent plane. 

Define a plane to the sphere at visible point and project the boundary points on 
to this plane through the negative of visible point (see Fig. C.3). Now the order of 
the points in the reach cone is the same as that on the plane. Order of the points 
can be found by computing the angle each of the points make with a reference line 
passing through the visible point. The angles thus obtained are sorted to compute the 
automatic order of boundary points. 

C.6 Interactively Creating the Reach Cone 

Boundary points for a reach cone can be defined interactively or from a file. We 
have created a GUI in which points are added and can be repositioned. The GUI 
designed has the functionality to add, delete, and specify the order of the points to 
create a reach cone. User is provided with the facility to compute the visible point 
automatically by simply finding the resultant vector of all the normalized boundary 
point vectors. The user may reposition the visible point if the automatically computed 
point is not meeting the necessary condition for the location of the visible point. For 
some joints like the wrist joint in humans, the reach cone can be approximated by 
an ellipse. Detailed description of the interface use and implementation can be found 
in [70]. Reach cones created for the Hugo mesh are shown in Fig. C.4. 
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affine camera 40,107-109 
algebraic error 109 
animate 1 
animatic 3 
animation 1,3,8 

character animation 1 
computer animation 1,4 
nonphotorealistic 83 
stylized 83 
traditional animation 1 

animation pipeline 3 
animation synthesis 85 
axis planes 107 

Ballet of the Hand animation 54 
base joint 41 
base model 16 
blended skinning 43 
body camera 95 
bones blending 43 
Boujou 66 

camera center 40,106 
camera path 20,21,25,79 
camera path augmentation 78 
camera path transplantation 77 
camera tracking 63,66 

offline 64 
online 64 

camera-character relationship 6,9 
cartoon capture 61 
eels 1,3 
character pose 18 
character tracking 59 

compositing view-dependent animations 
88 

CONDENSATION 60 
contour 67 
contour tracking 62,68 
control lattice 47 
crowd animation 92 
cubist paintings 94 

deformed mesh model 36,50 
direct free-form deformation 47 
distal segment 115 
distance of viewpoint 25 

end-effector 41 
envelope 18 
exponential map 42, 111, 112,114 
exposure sheet 3 
extremes; see key frames 

forward kinematics 41 
free viewpoint video 63 
free-form deformation 47 

gimbal lock 111,114 
global camera 92,93 
Gold Standard Algorithm 40,110 

Harold 32 
hierarchical extended nonlinear transforma­

tions 17 
hinge joints 115 
Hugo 4 
Hugo's Antics animation 53 
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Hugo's High Jump animation 4,20, 
stylized version 97 

human motion capture 59 

image plane 105 
in-betweening 3 
inverse kinematics 42 

joint reach cones 42 

Kalman filter 60,67 
measurement assimilation 67 
prediction 67 

key cameras; see key views 
key deformation 16 
key frames 3 
key poses 50 
key viewpoint 16 
key views 50 
kinematic chain 41 

lattice 37 
layout 5 
local camera 92,93 
log map 112 

mannequin sketch 38,46 
master camera 97 
matchmoving; see camera tracking 
Mexican Wave animation 92,93 
model sheet 3 
motion doodles 34 
motion graphs 85 
moving-camera character animation 2, 

11 
multimodal inputs 57 

non-view-dependent animation 11,53 
nonlinear projection 14 
normalization 109 
Normalized Direct Linear Transformation 

Algorithm 40,109 

observer-dependent deformations 17 
Olaf Reloaded animation 38,54 
Olaf, the Ogre 54 
orthographic camera 39, 107 

Pablo Picasso 94 
path-mapping function 92 

,55 pinhole camera 105,106 
pose space deformation 13 
posed mesh model 36,46 
principal plane 107 
principal point 107 
principal ray 107 
principles of animation 

straight ahead action 2 
principles of animation 2 

anticipation 2 
appeal 3 
arcs 3 
exaggeration 3 
follow through 2 
overlapping action 2 
pose-to-pose action 2 
secondary action 3 
slow in and out 3 
squash and stretch 2 
staging 2,4,5, 8 
timing 2 

projective camera 39,40 
proximal segment 115 

quaternion 112 

r-closest key viewpoints 20,52,72 
radial decay function 49 
reach cone polygon 116 
reach cones 115, 121 
regularization 42 
rotoscoping 62 
runtime of the animation 20 
Ryan 14 

sampling order; see sampling time 
sampling time 18,23 
scaled orthographic camera 107 
second-order dynamics 67 
shape template 67 
skeleton 37 
SKETCH 31 
SmoothTeddy 31 
spatial key framing 14 
story sketch; see storyboard 
storyboard 3,4 
style machines 85 
stylistic reuse 83 
stylized animation 83 
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Teddy 31 
time-lapse sketch 5 
twist 116,119 
twist limits 119 

universal joint 115 

video-based motion capture; see 
vision-based motion capture 

view space 18,20 
configurations 23 
instantaneous 23 

view sphere 16,23 
view-dependent animation 8 
view-dependent character animation; see 

view-dependent animation 

view-dependent geometry 15 
view-dependent lighting and texture 103 
view-dependent mesh deformation algorithm 

47,48 
view-dependent model 16 
view-dependent posing algorithm 43,44 
view-dependent timing 102 
visible point 116 
vision-based motion capture 59 

initialization 59 
pose estimation 59,60 
recognition 59 
tracking 59 

weak perspective camera 108 
weighted blending 21,22 
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Fig. 1.4. The moving-camera frame. 

Fig. 1.5. Path of the camera center across all frames. 

Fig. 2.8. The small sphere is the recovered camera position and the line shows the view 
direction vector. The larger sphere, centered at the look-at point, gives an idea of the 
relative positioning of the recovered camera centers. 



Fig. 2.9. The left image shows the path traced on the envelope of the view space. 
The right image shows a close-up view of the path. The larger green sphere at the end 
of the path shows the position of the (current) camera when this snapshot was captured. 

Selected 
Key Pose 1 

Fig. 3.13. The view space — the smaller blue and red spheres are the key viewpoints. 



(a) (b) 

Fig. 4.5. (a) feature points tracked by Boujou, (b) camera tracking by Boujou. The 
camera path recovered is shown in red. 

(a) (b) (c) (d) 

Fig. 4.6. Posing the character from a video frame: (a) contours tracked on a frame of 
the input video with joints of the 2D skeleton marked in white, (b) corresponding 
joints on the 3D skeleton marked in white, (c) 3D skeleton and character's mesh after 
posing, (d) final rendered pose of the character. 



(a) 

(b) 

Fig. 4.7. (a) tracked contours and associated 2D skeletons on two key frames, 
(b) corresponding posed character viewed through their respective recovered cameras. 



Fig. 4.8. The viewpoints, the view directions and the view space. 

i .mum mm 
(a) (b) (c) 

Fig. 4.9. Character poses associated with key views and novel view generation. 



Fig. 4.10. The top row shows the camera path. The bottom row shows the corresponding 
generated animation frames. 

(a) (b) 

Fig. 4.13. (a) envelope of the view space constructed using the cameras recovered from 
the sketches, (b) transplanted camera path. 



I i<j. 4.16. I he top row shows the camera path changing on ! \ in distance. I he b o t t o m 

row shows the cor respond ing Licncralcd an ima t i on frames. 

Roughly planned camera paths 

* \ \ _ 

Fig. 5.4. Part of the storyboard for the reuse animation example. 
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View Sphere Change 

i A ^r Af 
View Sphere 2 

Fig. 5.7. Camera 1 (in green) generates the green character, Camera 2 (in red) generates 
the red character. Each view sphere generates two character poses in response to the 
two cameras. 

Fig. 5.8. Frames from the synthesized animation. 

(a) (b) (c) 

Fig. 5.10. The Mexican Wave Animation. 




