

View-Dependent Character Animation

Parag Chaudhuri, Prem Kalra
and Subhashis Banerjee

View-Dependent
Character Animation

Springer

Parag Chaudhuri
Prem Kalra
Subhashis Banerjee
Department of Computer Science and Engineering
Indian Institute of Technology Delhi
New Delhi, India

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006934623

ISBN-10: 1-84628-591-7 eISBN-10: 1-84628-762-6

ISBN-13: 978-1-84628-591-2 eISBN-13: 978-1-84628-762-6

Printed on acid-free paper

© Springer-Verlag London Limited 2007
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

9 8 7 6 5 4 3 2 1

spnnger.com

Acknowledgments

The authors want to thank Ashwani Jindal for being an extremely helpful collabo­
rator. A special thanks to Vaishali Paithankar for helping with generation of a video
used as an example in this book. The authors have also benefited from comments and
suggestions received from the following people: Professor Sharat Chandran, Profes­
sor Karan Singh, Subhajit Sanyal, and Ayesha Choudhary.

The authors are also thankful to the extremely enthusiastic, helpful, and coop­
erative staff of Springer, particularly Helen Desmond, Beverley Ford, and Alfred
Hofmann.

The authors wish to acknowledge the support of Mr. K. R. Kaushik in making
the Vision and Graphics Lab a fantastic place for doing research. The authors want
to thank the faculty, staff, and their many friends from the Department of Computer
Science and Engineering for their help and support.

Finally, the authors wish to express their gratitude to their family members for
their constant encouragement and patience.

Indian Institue of Technology Delhi, Parag Chaudhuri
India Prem Kalra

Subhashis Banerjee

Preface

Animation has grown immensely over the years to become a mainstream art form
in the hugely active industries of motion films, television, and advertising. A few
basic rules and principles about how to harness the technology that gives the illusion
of life to still drawings or objects and how to string together individual shots and
scenes to tell a story or create a homogeneous, meaningful sequence or mood govern
the fundamental aspects of creating an animation.

Computer animation builds upon these fundamentals and uses computer - gener­
ated imagery (CGI) to weave magic on the screen. In spite of the fact that the tech­
nology employed in creating animation has advanced by leaps and bounds over the
years, animation remains a very labourious process, involving a lot of skill and often
many iterations, before the magic looks just right. This is the reason why computer
animation remains a very active area for research.

Animations where the character and the rendering camera both move are known
as moving-camera character animations. The sheer number of parameters the ani­
mator has to control, in order to get the desired action shot from the intended camera
position, is overwhelming. We present, in this book, view-dependent animation as a
solution to the challenges encountered during the creation of moving-camera char­
acter animations.

Creation of 3D character animations in which the viewpoint changes in every
frame is a challenging problem because it demands a definite relation to be pre­
served between the character and the camera, in order to achieve clarity in stag­
ing. We present view-dependent animation as a solution to this arduous problem. In
view-dependent animation, the character's pose depends on the view. The camera
and character pose association, once specified by the animator, is maintained auto­
matically throughout such an animation. We design a general framework to create
view-dependent animations.

We formulate the concept of a view space of key views and associated key char­
acter poses. The view space representation captures all the information contained in
a camera matrix, i.e., the position of the camera center, the direction of viewing, and
the focal length of the camera, concisely and elegantly. Any camera path traced on

viii Preface

the envelope of this view space generates a view-dependent animation. This facil­
itates fast and easy exploration of the view space in terms of the view-dependent
animations it can generate.

We present a pipeline to create the view space from sketches and a base three-
dimensional (3D) mesh model of the character to be animated. Robust computer
vision techniques are used to recover the camera from the sketches. We present two
novel view-dependent algorithms, which allow us to embed a multilayered defor­
mation system into a view-dependent setting and integrate it with computer vision
techniques. These algorithms match the pose of the 3D character to the sketched
pose. The recovered camera and pose form the key views and key character poses
and create a view space that can be used to generate a view-dependent animation by
tracing paths on it.

We then analyze the problem of authoring view-dependent animations from mul­
timodal inputs. We demonstrate that we can extract the relevant information about
the cameras and character poses from a video sequence and create a view space. The
view space serves as a common representation for all the information contained in
different input types like sketches, video, and motion capture. Hence, it is used to in­
tegrate all these inputs together. We show that we can use this combined information
to generate a view-dependent animation in real time as the animator traces a path on
the view space.

We introduce the concept of stylistic reuse and formulate it in terms of our frame­
work. We present three techniques for reusing camera-controlled pose variations to
animate multiple view-dependent instances of the same character, a group of distinct
characters, or the body parts of the same character.

The book is addressed to a broad audience. It should be of great value to both
practitioners and researchers in the area of computer animation. We also cover all
the prior work relevant to the topics presented in this book so that there is no specific
prerequisite. A basic familiarity with the area of computer animation and computer
graphics should be sufficient. The book has a lot of figures to help understand all the
concepts introduced in it. We have included an example animation for every facet of
view-dependent character animation we have explored in this book. All the example
animations are available at http://www.cse.iitd.ernet.in/~parag/vdabook.

We would very much appreciate receiving comments and suggestions from the
readers.

Indian Institute of Technology Delhi, Parag Chaudhuri
India Prem Kalra

Subhashis Banerjee

Contents

Acknowledgments v

Preface vii

1 Introduction 1
1.1 Principles of Animation 2
1.2 The Animation Pipeline 3
1.3 Moving-Camera Character Animation 4

1.3.1 Challenges in creating moving-camera character animations 7
1.4 Designing a Framework for View-Dependent Animation 9
1.5 Tour of the Book 11

2 A Framework for View-Dependent Animation 13
2.1 Prior Work 13

2.1.1 Character pose spaces for animation 13
2.1.2 Controlling camera variations to create animation 14
2.1.3 View-dependent geometry 15
2.1.4 Observer-dependent deformations in illustrations 17

2.2 The View Space 18
2.3 Distance of Viewpoint 25
2.4 Other Extensions 29
2.5 Chapter Summary 29

3 View-Dependent Animation from Sketches 31
3.1 Prior Work 31

3.1.1 Creating character models from sketches 31
3.1.2 Posing character models from sketches 33
3.1.3 Animating character models from sketches 34

3.2 Overview of the Pipeline 35
3.3 Inputs 37

3.3.1 Interactive skeleton and lattice construction 37

x Contents

3.4 Recovering the Camera 38
3.5 Posing the Character 41

3.5.1 Skeleton-based posing 41
3.5.2 View-dependent posing algorithm 44
3.5.3 Mesh deformations 47
3.5.4 View-dependent mesh deformation algorithm 48

3.6 Animating the Character 50
3.6.1 Constructing the view space 51
3.6.2 Generating the animation 51
3.6.3 Blending view-dependent animation with

non-view-dependent animation 53
3.7 Discussion of Other Results 54
3.8 Chapter Summary 56

4 View-Dependent Animation from Multimodal Inputs 57
4.1 Challenges in Multimodal Authoring of Animation 57
4.2 Prior Work 58

4.2.1 Character tracking in video 59
4.2.2 Camera tracking in video 63

4.3 Creating a View Space from Video 65
4.3.1 Camera tracking 65
4.3.2 Character posing 67
4.3.3 Constructing the view space 69

4.4 Creating the View Space from Multimodal Inputs 71
4.5 Generating the Animation from Video 72
4.6 Generating the Animation from Multimodal Inputs 75

4.6.1 Recovering the camera path from video and the character
poses from sketches 75

4.6.2 Transplanting the camera path on the view space 75
4.6.3 Augmenting the camera path 78

4.7 Chapter Summary 80

5 Stylistic Reuse of View-Dependent Animations 83
5.1 Prior Work 83

5.1.1 Stylized animation 83
5.1.2 Synthesis and reuse of animation 85

5.2 Animating Multiple Characters from the Same View Space 87
5.2.1 Planning, sketching, and creating the

view-dependent models 88
5.2.2 Generating animations over a special view space 88
5.2.3 Rendering the animation 91

5.3 Animating Multiple Characters from Multiple View Spaces 92
5.4 Animating Different Parts of a Single Character from a Single

View Space 94
5.5 Chapter Summary 97

Contents xi

6 Discussion and Future Directions 99
6.1 Discussion 99
6.2 Future Directions 102

A Camera Models and Computation of the Camera Matrix 105
A.l The Pinhole Camera Model 105
A.2 Anatomy of the Projective Camera 106
A.3 Cameras at Infinity 107
A.4 Computation of the Projective Camera Matrix 108
A.5 Computation of the Affine Camera Matrix 109

B The Exponential Map Parameterization of Rotations I l l
B. 1 Exponential Maps 112
B.2 Derivatives with Respect to the Exponential Maps 113
B.3 Strengths and Limitations of the Exponential Map 114

C Spherical Joint Limits with Reach Cones 115
C. 1 Defining Reach Cones 115
C.2 Detecting Reach Cone Inclusion 117
C.3 Calculating a Boundary Position 118
C.4 Twist Limits 119
C.5 Cyclic Order of Boundary Points 119
C.6 Interactively Creating the Reach Cone 120

References 123

Index 131

1

Introduction

The word animate literally means''to give life to!' Animation can be thought of as the
process of making objects move and creating an illusion of life [124]. The animator
is the person who directs and composes this movement. Since movements of objects
and creatures in an animation are generally inspired by how they move in real life,
animation is easy, in principle. But as the famous Disney animator Bill Tytla once
said, "There is no particular mystery in animation... it's really very simple, and like
anything that is simple, it is about the hardest thing in the world to do."

Traditionally, animation began with each frame being painted by hand and then
filmed. Over the course of many years animators perfected the ability to impart
unique, endearing personalities to their characters. Many technical developments in­
cluding the introduction of colour and sound, the use of translucent eels (short for
celluloid) in compositing multiple layers of drawings into a final image, and the Dis­
ney multiplane camera [124] helped animation mature into a rich and complex art
form.

Computer animation is the modern day avatar of animation where the computer
is used to draw (or render) the moving images. With the advent of the computer,
animation has gradually moved into the realm of three dimensions. The computer
is primarily used as a tool to interact with the characters in 3D in order to define
and control their movement. Today, animated characters span across a diverse spec­
trum ranging from cartoonlike humans {The Incredibles [15]) to fantasy characters
(Shrek [1]) and from animals (Madagascar [35]) to photorealistic humans (Final
Fantasy: The Spirits Within [114]). The need to animate such diverse characters has
caused character animation to become an extensively researched area.

Coordinating and presenting the character's movement in three dimensions to
convey a specific idea to the audience, however, still remains an arduous challenge.
The animator has to employ a lot of artistic and technical skill, and often a labourious
iterative trial-and-error process to achieve a desired combination of the character's
action and the point of view from which it is shown. Since in computer animation,
values of many parameters that govern the appearance and the movement of the
character, can be varied, the animator has an overwhelming number of things to
control. It is especially difficult for the animator to generate the character's action

2 1 Introduction

if the point of view (i.e., the rendering camera) is also moving. This book deals
specifically with the problem of creating moving-camera character animations using
a technique called view-dependent character animation.

Creating moving-camera character animations in three dimensions is a multi-
faceted computer graphics and computer vision problem. It warrants a formal repre­
sentation of the moving camera and efficient algorithms to help author the multitude
of character poses required for the animation. One also has to deal with issues per­
taining to camera, character pose interpolation, and visualization of the association
between the two. Therefore, the solution to this problem, on one hand, has to be effi­
cient and elegant from the perspective of a computer scientist. On the other hand, the
solution must make sense and be intuitive to use for the animator. We develop and
demonstrate a framework in an endeavour to find such a solution.

To set the context for developing a framework for moving-camera character an­
imation, it is important to understand the fundamental principles behind animation.
This chapter discusses the animation pipeline and draws inspiration from well estab­
lished animation practices to introduce the idea of view-dependent character anima­
tion.

1.1 Principles of Animation

The primary aim of animation is to infuse life into characters. This required the early
practitioners of animation to experiment with a plethora of methods for depicting
movement on paper. In order to perfect this art, early animators who made sketches
of moving human figures and animals, studied models in motion as well as live action
film, playing certain actions over and over. The analysis of action became important
to the development of animation. The animators continually searched for better ways
to communicate the lessons they learned. Gradually, procedures were isolated and
named, analyzed and perfected, and new artists were taught these practices as rules
of the trade. These came to be known as the principles of animation [124]. These
principles are

1. Squash and stretch - Defining the rigidity and mass of an object by distorting its
shape during an action.

2. Timing - The spacing of actions in time to define the weight and size of objects,
and the personality of characters.

3. Anticipation - The preparation for an upcoming action so that the audience
knows it (or something) is coming.

4. Staging - The idea of presenting an action so that it is unmistakably clear and is
not missed by the audience.

5. Follow through and overlapping action - Guiding the termination of an action
and establishing its relationship to the next action. Actions should flow into one
another to make the entire scene flow together.

6. Straight ahead versus pose-to-pose action - Two contrasting approaches to the
creation of movement. Straight ahead refers to progressing from a starting point

1.2 The Animation Pipeline 3

and developing the motion as you go. Pose-to-pose refers to the approach of
identifying key frames and then interpolating intermediate frames between them.

7. Slow in and out - The spacing of the in-between frames to achieve subtlety of
timing and movement. This is based on the observation that characters usually
ease into and ease out of actions.

8. Arcs - Since things in nature don't usually move in straight lines, this helps in
defining the visual path of action for natural movement.

9. Exaggeration - Accentuating the essence of an idea via design and action.
10. Secondary action - The action of an object resulting from another action. These

support the main action, possibly supplying physically based reactions to the
previous action.

11. Appeal - Creating a design or an action that the audience enjoys watching.

These principles were adapted for computer animation by Lasseter [86]. Squash
and stretch, timing, slow in and out, arcs, and secondary actions deal with how the
physics of the character (like its weight, size, and speed) is presented in relation
to its environment. Exaggeration, appeal, follow through, and overlapping action
are the principles that address the design of an action sequence. Straight ahead and
pose-to-pose are concerned with contrasting production techniques for animation.
Anticipation and staging define how an action is presented to the audience,

Animators developed the animation pipeline based on these principles. An ani­
mation develops as an amalgamation of ideas: the story, the characters, the continuity,
and the relationships between scenes. The animation pipeline is a sequence of several
steps that converts a story to a final animation.

1.2 The Animation Pipeline

First, a preliminary storyline is decided upon along with a script. Next, a storyboard
that lays out the action scenes by sketching representative frames is developed. The
story sketch shows character, attitude, expressions, type of action, as well as the se­
quence of events. In a preliminary storyboard, however, only the sequence of actions
of the various characters are planned. The characters are not fully developed. The
look and feel of a character is developed by sketching the character in various poses
in a model sheet. The appearance of the character is documented from all directions
and is used as a reference while actually animating the character. The exposure sheet
records information for each frame such as sound track cues, camera moves, and
compositing elements. Often the storyboard is transferred to film with the accompa­
nying sound track and a story reel or an animatic is created to get a feel of the visual
dynamics of the animation. Once the storyboard is fixed, a detailed story is worked
out. Keyframes (also known as extremes) are then identified and produced by master
animators. Assistant animators are responsible for producing the frames between the
keys; this is called in-betweening. Test shots, short sequences rendered in full colour,
are used to test the rendering. The penciled frames are transferred to eels and painted.
These eels are then composited together and filmed to get the final animation.

4 1 Introduction

Computer animation production has borrowed most of the ideas from the con­
ventional animation pipeline. The storyboard still holds the same functional place in
the animation process, as does the model sheet. However, after the planning phase,
computer animation often makes the transition into 3D. The character models and the
world which they inhabit have to be handcrafted. Controls are provided that allow
movements of various parts of the character. Then the animation staging is done in
3D, in which the camera positioning and movement for each shot is decided. This is
followed by shading and lighting the animation and finally rendering the frames. As
mentioned earlier, this sequence of steps is extremely tedious and time-consuming.
It involves a lot of skill and a trial-and-error, iterative process wherein performing
one task may require redoing one or more previously completed tasks.

We are now ready to examine moving-camera character animations and the chal­
lenges the animator has to face while creating them.

1.3 Moving-Camera Character Animation

"%> ~\So
Fig. 1.1. A preliminary storyboard (see top to bottom, left to right).

We explain the creation of a moving-camera character animation using an exam­
ple, Hugo's High Jump. Hugo [17] is the name of the character in the animation. We
start with a preliminary storyboard (see Fig. 1.1) for this animation. Once the basic

1.3 Moving-Camera Character Animation 5

action has been planned and the character's look has been decided upon, we get the
final or detailed story board, as shown in Fig. 1.2.

Fig. 1.2. The final storyboard for Hugo's High Jump.

Then the layout of the scenes is planned. Among other things, the layout also
indicates the camera position for each frame. The layout is guided by the principle
of staging and has to clearly portray where the viewer is supposed to be while ob­
serving the situation. Figure 1.3 is a time-lapse sketch for the animation sequence
storyboarded in Figures 1.1 and 1.2. A time-lapse sketch shows the position of the
character at different times in a single sketch.

This animation has a moving camera, i.e., the viewpoint is changing in each
frame. The layout helps plan these camera moves. Figure 1.4 shows how the framing
of the shots change as the camera moves through frames 1, 9, 11, and 15. When
the character is seen from the camera position for that particular frame number, the
scene looks like the corresponding thumbnail on the storyboard. The movement of
the camera center is drawn in red across all the frames in Fig. 1.5. It is clearly seen
that in order to achieve clarity in staging the animator has to create a very definite
relation between the pose of the character and the camera position. Every shot is

6 1 Introduction

Fig. 1.3. A time-lapse sketch of Hugo's High Jump.

Fig. 1.4. The moving-camera frame (see colour insert).

drawn from the viewpoint of the audience, implicitly establishing a camera from
which the action is understood clearly.

Thus, the camera-character relationship plays a pivotal role from a very early
stage in the animation creation process. This combination of the camera or the view
and the character's pose or movement is maintained throughout the creation of the
animation, even when the character is transferred from two dimensions to three di­
mensions.

Translating the planned camera and character moves to 3D is an extremely diffi­
cult task. In this book we develop a framework to alleviate this problem. In order to
illustrate the primary difficulty in creating moving-camera character animations, we
evaluate the challenges involved in the process and suggest our alternative method­
ology.

1.3 Moving-Camera Character Animation 7

Fig. 1.5. Path of the camera center across all frames (see colour insert).

1.3.1 Challenges in creating moving-camera character animations

The animation has to be created in three dimensions. A mesh model of the character
is made using the character's model sheets for reference. Then the character's pos­
ture, in three dimensions, has to be visually matched to the sketches for every key
frame. This may require manually deforming various parts of the character. More­
over, the view direction from which the character is seen needs to match with the
viewpoint in the sketch. This requires considerable effort on part of the animator
because the possible combinations of a camera and a character's pose are often over­
whelming. Next, to generate the animation, the character poses and the cameras for
the in-between frames are obtained. In order to do this, if they are independently in­
terpolated, then there is no guarantee that the in-between character pose will have its
corresponding viewing camera as intended by the animator (see Fig. 1.6). A number
of iterations may be needed to get the appropriate match between all the character
poses and the cameras required to generate the desired animation.

A straightforward solution to this problem is to make the interpolation of the
cameras depend on the interpolation of the poses in some manner, in order to pre­
serve the association between them. This can be achieved rather simply, by making
one interpolation function dependent on the other. Naive approaches, however, fail to
present any geometric representation for this dependence. Thus, they do not provide
sufficient insight into the structure of such a dependence and cannot be used to exploit
the camera and character pose association for versatile animation authoring. They
may also have to be modified on a case-by-case basis. In an alternative approach,
which is more intuitive and requires significantly less work, we find the camera and
the character's posture, which together best match the sketch, using computer vision
techniques. In this way the camera and the corresponding character pose get asso­
ciated when they are recovered together from the sketch. All the recovered cameras
and their corresponding poses, taken together, form a space. This space provides a
representation for all the moving-camera character animations that can be generated
using the recovered cameras and poses. In particular, it explicitly embodies the as­
sociation between the two. Now, in order to generate the in-between frames for the

8 1 Introduction

Sketch
Keyframes

Pose
Character
{Manually}

INDEPENDENTRECOVERY
Estimate
Cameras
{Manually}

Independent interpolation
of the camera and the pose

Fig. 1.6. Approach 1: Separately reconstructing poses and cameras from sketches and then
independently interpolating both to get the desired animation.

animation we only have to interpolate the camera in this space (see Fig. 1.7). This
interpolation automatically generates the corresponding character poses associated
with the interpolated cameras. Moreover, the camera and character pose association
is maintained throughout the animation.

This approach of associating the camera and the character pose is fundamental
to view-dependent animation. This motivates us to investigate the concept of view-
dependent character animation for creating moving-camera character animations.
View-dependent animation explores the complex relationship between the camera
and the character's actions and, hence, solves the staging problem in a limited sense.
In view-dependent animation, the character's action depends on the view. An anima­
tor specifies the character pose with the desired view direction for certain key views.
This is done on the basis of prior planning by the animator in the form of storyboards
or key frame sketches. Then our framework generates a space using the key cameras
and associated character poses specified by the animator. In order to generate the de­
sired animation, the animator has to trace the planned camera path in this space. The
corresponding sequence of character poses is generated automatically in response to
the camera movement. It is also possible to quickly examine this space and try out
other variations of the camera path, which can generate other interesting animations.

The principle of staging dictates that the character's action is to the camera so that
the intent of the action is clear and not obscured. In general, the character's action is
considered independent of the camera used to render the animation. View-dependent
animation gives us a different perspective to the problem of camera-character asso-

1.4 Designing a Framework for View-Dependent Animation 9

Sketch
Keyframes

*i , N ^ l 3 t I T \ Character^
J , * ^ P " « # - ; {Vision Guicted}

* RECOVERY/
1 COUPLED^

Estimate I
Cameras *
{Vision Guided]

~ ' Interpolate camera path only
Poses are interpolated automatically

Fig. 1.7. Approach 2 (view-dependent approach): Computer vision-based techniques allow
coupled camera and pose recovery, and then interpolating only the camera generates the de­
sired animation.

ciation. Our framework captures the relationship between the camera and the char­
acter pose based on the animator's specification of key views. It generates a space
that characterizes the camera-character pose relationship desired by the animator,
based on inputs from the animator. Once this space is created, the framework au­
tomatically maintains the camera-character pose correspondence. This allows the
animator to concentrate solely on the aesthetic component of the desired animation.
It, thus, translates the animator's intuition and her concept of staging and layout of
moving-camera character animations into a tangible, explorable space of cameras
and character poses.

The view-dependent approach demands that we define a formal representation
of the camera-character pose association. This representation should be practical to
implement and use. It should obviously be conducive to the many ways in which
a camera can be defined and interpolated. It should also encompass the character
pose variations. These requirements span over a multitude of challenging computer
graphics and computer vision issues. In the subsequent sections, we examine the
scope of and the challenges we face in designing a framework for view-dependent
animation, and how we solve them.

1.4 Designing a Framework for View-Dependent Animation

We build a framework that facilitates the creation of view-dependent character ani­
mations, i.e., the animation must respond automatically to changes in the rendering

10 1 Introduction

viewpoint. In order to design a general framework that encapsulates the rich diversity
offered by moving-camera animations, we are faced with a number of challenging
problems, as described below:

1. The framework must provide a sound basis for representing view-dependent an­
imations.
• Since a view-dependent animation is a combination of views and associated

character poses, the framework must have a way of encapsulating informa­
tion about viewpoints and their associated character poses.

• It must also be able to generate new animations quickly, with minimal effort,
after the initial set of views and poses have been specified.

• It should be possible for an animator to add views and poses to an existing
set, in order to enhance the animation. The framework must be able to handle
such augmentations.

2. The framework should be able to represent and exploit all the variations possible
in defining a camera shot. Camera shots, in an animation, vary from wide pans
to close ups, often as guided by cinematographic or theatrical principles [6]. The
variations we want to capture are
• Changes in the view direction
• Changes in the distance of the camera center (or viewpoint) from the char­

acter
• Changes in focal length of the camera, i.e., zoom and scaling

3. The animator has to specify the desired animation using some mode of input to
the framework. Traditionally, animators are familiar and trained to work with
sketches. We have already seen an example of how sketches are used to plan an
animation. The framework must have the following capabilities when dealing
with sketches:
• It must be able to recover information about the intended viewpoint from the

sketch.
• It must be able to assist the animator in posing the character using the

sketched pose as a guide.
• The framework should work with a large variety of character sketches.

Sketches are not photo accurate. They are often rough representations of the
character.

4. Animators often use recorded video performances as references for key framing
characters (i.e., specifying an animation using a sequence of key frames). Nu­
merous examples [115, 124], of the use of this technique for key framing humans
and animals can be found. The framework should be able to use video input to
create new view-dependent animations.
• The framework must have a way to describe and interpret the information

contained in a video in terms of the cameras in each frame and the corre­
sponding pose of the character.

5. It may be desirable to mix many modalities while creating the animation such as
keyframing, animation from reference video, and motion capture [115]. Suppose

1.5 Tour of the Book 11

the animator wants to replicate the camera movement of a master cinematogra-
pher from some existing movie (video) in the animation. She, however, wants
to give a unique movement style to the character and, hence, wants to keyframe
the movement separately, using sketches to plan the poses. Currently, this mix
and match would require tremendous manual effort. We want our framework to
adapt to such multimodal inputs, i.e., it should work even when the input method
is a combination of these modes.

6. One of the primary objectives of the framework is to aid the animator. In order
to achieve this, the framework must adhere to the following principles:
• It must, above all other considerations, allow sufficient control and freedom

to the animator so that the desired animation can be generated.
• The framework is not meant to replace the animation pipeline. Rather it is

supposed to complement existing animation work flows by expediting the
creation of complex moving-camera character animations. For this purpose,
the generated view-dependent animation must blend in seamlessly with ani­
mations generated using more conventional techniques, like keyframing.

This book presents a framework meeting all the challenges enumerated above.
We introduce the concept of a view space defined by the key views and associated
key character poses that completely captures all the information required to produce
a view-dependent animation. The framework generates new animations in real time
whenever the animator traces out a new camera path on the view space. We show
that simple interpolation schemes allow the generation of in-between poses from key
poses by just defining the intermediate camera positions and orientations.

We present complete pipelines to create view-dependent animation from inputs
sketches, videos, and a mix of both. The ability to map sketches and video into a
common representation (i.e., the view space) allows us to mix and match these var­
ious input types to create unique view-dependent animations. The technique allows
the mixing of other input modalities such as motion capture data as well.

The framework allows the animator to seamlessly blend view-dependent anima­
tions with non view-dependent animations1 by simply matching the rendering cam­
eras for successive frames.

Finally, we look at a very interesting application of view-dependent animation
to reuse stylized animation. We present a formulation to synthesize an animation by
reusing the view-dependent instances of a single character and a group of characters.
We also show how one can animate different parts of a character using different
view-dependent variations.

1.5 Tour of the Book

Animations where the character and the rendering camera both move are known as
moving-camera character animations. The sheer number of parameters the anima-

1 Non view-dependent animations are those in which the character's pose does not explicitly
depend on the camera. See Section 3.6.3 for more explanation.

12 1 Introduction

tor has to control, in order to get the desired action shot from the intended camera
position, is overwhelming. In this book we present view-dependent animation, as a
solution to the challenges encountered during the creation of moving-camera char­
acter animations.

This is our primary motivation for developing a framework for view-dependent
animation. A quick overview of the various topics discussed in this book are as fol­
lows:

• Chapter 2 presents the theoretical description of our framework. It presents the
concept of a view space and how it encapsulates the camera-character pose rela­
tionship. Further, this chapter explains how the view space represents and uses all
variations possible in defining the camera parameters. It also presents an example
to illustrate these concepts.

• All animators, regardless of whether they are creating 2D or 3D animations, start
from model sheets and story boards. Sketches are perhaps the most common and
familiar medium of input among animators. Chapter 3 presents our pipeline for
creating view-dependent animations from sketches. It introduces two novel algo­
rithms for view-dependent posing and view-dependent mesh deformation. These
allow the animator to create view-dependent models from sketches more intu­
itively and efficiently.

• In Chapter 4 we present our technique for creating view-dependent animations
from multimodal inputs. We first analyze the general problems in authoring
view-dependent animations from multimodal inputs. We then present a solution
to these problems by demonstrating how our framework can use video-based in­
put to generate view-dependent animations. We argue that this framework can
handle multiple types of inputs and that they all share a common representation
in terms of the view space. This allows the animator to mix and match these
inputs as desired. We also present examples to demonstrate the use of multiple
input modes in creating new and interesting animations.

• The view-dependent animations generated by a camera path is unique. In Chap­
ter 5 we develop a framework for reusing the view-dependent variations in or­
der to synthesize novel animations. We present three techniques for reusing
camera-controlled pose variations to animate multiple view-dependent instances
of the same character, a group of distinct characters, or the body parts of the
same character. We present animation examples for illustrating each of these
techniques.

• Chapter 6 presents a concise summary of the features of our framework for view-
dependent character animation. We conclude by presenting some directions for
future work as a set of interesting problems, which can be solved by extending
the ideas presented in this book.

2

A Framework for View-Dependent Animation

In the previous chapter we have seen that an animation is generated as a consequence
of some action captured from a desired camera. In a moving-camera character anima­
tion, the character's pose depicting an action or motion needs to be defined in tandem
with the camera. We provide a framework that embodies the concept of camera and
character pose association.

2.1 Prior Work

The essential idea behind the framework for view-dependent animation is that it pro­
vides a formal representation of the camera-character pose association. There have
been attempts toward developing various representations of the camera as well as
the character pose. However, these representations do not capture the association be­
tween the two. In this section, we present a brief discussion of these representations,
in light of the objective we are trying to achieve.

We first look at works that represent plausible character poses as an abstract space
but control the character pose animation by some mechanism other than the camera.

2.1.1 Character pose spaces for animation

Lewis et al. [90] present a method to perform pose space deformation. Here, de­
formation is represented as a mapping from a pose space, defined by either an un­
derlying skeleton or a more abstract system of parameters, to displacements in the
object's local coordinate frames. They use scattered data interpolation in the pose
space to generate intermediate poses for the animation, using a radial basis function.
This technique is suitable for shape interpolation and layered skeletal animation;
however, it has no way of associating the pose space with the view.

Ngo et al. [104] present a technique that models the space of all the key config­
urations (called key poses in this book) as a cross product of simplicial complexes.
Then they define the mapping from this space to the image space and show that this

14 2 A Framework for View-Dependent Animation

mapping is invertible. This allows the user to manipulate the image without under­
standing the structure of the configuration-space model. Their system applies simpli-
cial configuration modeling to 2D vector graphics. This idea is similar to the convex
hull structure used in [109] (see Section 2.1.3), which is also a simplicial complex.

In another recent work Igarashi et al. [67] present the technique of spatial
keyframing. The key poses are defined at specific positions in a 3D space. The map­
ping from the 3D space, to the configuration space is defined by an interpolation
function. The user controls a character by adjusting the position of a control cur­
sor in the 3D space and the pose of the character is given as a blend of nearby key
poses. Thus, the user can create motion in real time that can then be recorded and
interpreted as an animation sequence. Spatial keyframing associates key poses of the
character with directions in 3D space. However, it does not associate the character
pose with the view direction.

Next, we examine works that create interesting animations using various rep­
resentations of the rendering camera. These methods vary the camera parameters,
independent of the character pose, in order to generate the animation.

2.1.2 Controlling camera variations to create animation

Agrawala et al. [4] present a multiprojection rendering algorithm for creating multi-
projection images and animations. They develop an interactive interface for attaching
local cameras to the scene geometry to alter the projection for each object inde­
pendently, thereby generating a multiprojection image. Singh [119] also presents a
technique for constructing a nonlinear projection as a combination of multiple linear
perspectives. The viewports of a number of exploratory linear perspective cameras
are laid out on a common canvas on which the nonlinear projection of the scene is
rendered. Each exploratory camera influences different regions in the scene based on
local weight values. This approach neither integrates well into a conventional anima­
tion work flow nor has ways to control global scene coherence.

Coleman and Singh [29] make one of Singh's [119] exploratory cameras a boss
(or primary) camera; this camera represents the default linear perspective view used
in the animation. All other exploratory (or secondary) cameras, when activated, de­
form objects such that when viewed from the primary camera, the objects will ap­
pear nonlinearly projected. They describe a framework for the interactive authoring
of nonlinear projections, defined as a combination of scene constraints and a number
of linear perspective cameras. These techniques used in the production of the short
animation movie Ryan [85] demonstrate how geometric and rendering effects result­
ing from nonlinear projections can be seamlessly introduced into current production
pipelines. This type of camera-based stylization can produce striking effects, which
can be aesthetically harnessed by an artist to create interesting animations.

In contrast to the above techniques, Yang et al. [142] extend traditional 2D image
deformation techniques to 3D space and perform the deformation only on the 2D
frames generated by the graphics pipeline. This requires no change in the traditional

2.1 Prior Work 15

graphics pipeline. They derive the deformation algorithms from 3D nonlinear per­
spective projections, which consider factors such as depth, view angle, and camera
position.

Other work involving camera or view direction control has chiefly focused on
permitting a user to manipulate a virtual camera in a virtual environment as presented
in [45, 46, 54]. Funge et al. [42] construct a cognitive model, which embodies the
knowledge of the director and the cinematographer controlling the camera, using a
cognitive modeling language. The camera acts like a cognitive agent and places itself
based on the cues generated from the application rendering the scene and the axioms
defined to govern its behaviour in the cognitive model.

Although it is evident from the above discussion that many different representa­
tions of the character pose spaces and rendering cameras have been investigated in
the past, there is very limited prior work on the idea of view-dependent animation,
i.e., techniques that actually use the camera to influence the pose of the character.
We now discuss techniques from the existing literature, which use the idea of view-
dependence of the character pose.

2.1.3 View-dependent geometry

The idea of dependence of the character's geometry on the view direction was first
put forward by Rademacher [109] in his work on view-dependent geometry (VDG).
He draws inspiration from the fact that artists catalogue the appearance of a character
on a model sheet. Since these are hand-created images, they do not correspond to
a precise physical space. They are drawn to achieve the best aesthetic effect and
are not bound to geometric precision. As a result, these drawings typically contain
many subtle artistic distortions, such as changes in scale and perspective, or more
noticeable effects such as changes in the shape or location of features. VDG allows
the animator to specify models in such a manner that their geometry can change with
the viewpoint, hence capturing different looks of an object from different viewing
directions.

The inputs to the system are a 3D model of a character (the base model) and a
set of drawings of the character from various viewpoints [see Fig. 2.1(a) and (b)].
First, the user manually aligns the base model with each drawing by rotating and
translating the camera. This gives a best matching viewing direction for each sketch,
which is known as a key viewpoint. The user then manually deforms the aligned base
model by altering the positions of the vertices of the mesh model, in order to match it
with the drawing. Note that the topology (vertex connectivity) of the model does not
change during the deformation; only the vertex locations are altered. Also note that
the drawings are not altered; only the base model is deformed. The deformed mesh
model is called a key deformation. The process is shown in Fig. 2.2.

A key viewpoint and a key deformation pair together constitute a view-dependent
model. Such a view-dependent model is obtained for each sketch. These view-
dependent models are constructed a priori in the modeling phase. In order to generate
the animation, we need to determine the pose of the 3D model associated with any
given camera direction.

16 2 A Framework for View-Dependent Animation

(a) Base
Model

(b) Reference Sketches

Fig. 2.1. Inputs to the VDG system (images courtesy Rademacher [109]).

Fig. 2.2. Construction of the view-dependent model. First align the base model to the sketch
and establish a key viewpoint. Then deform the model to match the sketch. On the right we
see the final key deformation (images courtesy Rademacher [109]).

Given a view direction, the shape of the corresponding 3D model is determined
as follows: The key viewpoints map to points on a sphere around the object, called
the view sphere. This is so because this method considers only the viewing direction
for the key and current viewpoints and not the distance from the cameras to the ob­
ject. A convex hull of these points is constructed. At rendering time, the face of the
convex hull, which is intersected by a ray from the current camera to the sphere cen­
ter, is determined. The intersected triangle denotes the closest three key viewpoints
surrounding the current camera. The current shape of the 3D model is generated as
a barycentric blend of the key deformations associated with the closest three key
viewpoints (see Fig. 2.3). Now, tracing any camera path on this view sphere gener­
ates the appropriate animation with view-dependent deformations.

This method also supports creation of animated view-dependent models. In this
case, the base model is nonrigidly animated, and a single set of key deformations is
not sufficient. Such situations need a different set of key deformations for the key
frames of the model's animation. This essentially results in a separate view sphere

2.1 Prior Work 17

Fig. 2.3. Viewpoints for each key deformation are shown as spheres around the model. To
compute the shape as seen from the current viewpoint, find the nearest three key viewpoints
and blend the corresponding key deformations (images courtesy Rademacher [109]).

at each key frame. The animation is generated by blending the deformations on a
per-frame basis, in response to the current viewpoint as the viewpoint moves from
one view sphere to another.

From Phong shading [107] to view-dependent texture mapping [37], graphics re­
search has shown that gaze direction is an important parameter in rendering objects.
This work extends this progression by modifying the actual shape of an object de­
pending on where it is viewed from. In doing so, they directly address a problem in
3D animation — the loss of view-specific distortions as an object moves from the
artistic 2D world to the geometric 3D world. By employing view-dependent geom­
etry in animation, we can render 3D models that are truer in shape to their original
2D counterparts.

2.1.4 Observer-dependent deformations in illustrations

Illustration has some visual characteristics that are very interesting although very
difficult to obtain using a computer. While the simulation of various painting styles
(see Section 5.1.1) has been successfully applied to computer-generated imagery,
expressive capabilities have not been developed to the same extent. The deforma­
tions of objects and space is a major element in the expressiveness of illustration.
Martin et al. [99] use hierarchical extended nonlinear transformations (HENLT) to
produce observer-dependent deformations in illustrations, in order to capture its ex­
pressive capabilities. The HENLTs change with variation in the observer's position
and orientation. They are then used to deform the object. So the object is seen differ­
ently from different directions.

The techniques of Rademacher [109] and Martin et al. [99] are the only known
direct applications of the view-dependent technique to animation, other than the one
presented in this book.

18 2 A Framework for View-Dependent Animation

In all the representations, except [99] and [109], of the camera and the charac­
ter pose discussed above, there is no direct one-to-one correspondence between the
viewpoint and the pose of the character. Hence, they are not particularly suited to ad­
dress the problem of moving-camera character animations in general. We present a
framework that embodies a general representation of view-dependent character ani­
mation. We use a view space (see Section 2.2), which is a space over camera parame­
ters. We associate a pose with every view direction in the view space, thus in essence
creating an auxiliary character pose space. The framework allows the use of general
forms of configuration-space models, as well as a simplicial complex, to represent
the view space. We also use a radial basis interpolant to blend the selected key poses
to generate the pose associated with the viewpoint in question (see Section 3.6.2).

We show that the framework we present reduces to the VDG formulation as a
special case (see Section 2.2). In addition, we also present techniques for automated
recovery of cameras and creation of view-dependent models from sketches, videos,
and hybrid inputs. In doing so we reduce the amount of manual intervention required
in the creation of the view-dependent models, thus alleviating one the major limi­
tations of the VDG technique. Kate et al. [76] propose a method to automate some
aspects of the view-dependent model creation. We present interactive techniques that
allow semi automated creation of the view-dependent models. These are not only in­
tuitive but are also robust and offer the animator more control over the animation.

We now present the details of the framework for view-dependent animation. In
the following section we examine how the view space is formed from key views and
associated character poses.

2.2 The View Space

We assume, for simplicity of explanation, that we are animating a single character
and that the camera is looking toward the character (i.e., the character is in the field
of view of the camera). We also assume that the view direction is a unit vector.

At a given instant of time the character may be potentially viewed from a set
of different viewpoints. The character may possibly have a different pose associated
with each of these viewpoints (see Fig. 2.4). We consider such a set of viewpoints
and associated character poses as one sample. We define a representation that enables
aggregation of such samples as an ordered sequence. These sets of viewpoints and
associated character poses sampled (or ordered) across time form a view space (see
Fig. 2.5). We refer to this time (which orders the samples) as the the sampling time
or sampling order. Every point on the surface envelope of this view space represents
a viewpoint (and a unit view direction), v. If we do not consider the sampling order,
then the view space is simply the space formed by the viewpoints and their associated
character poses. Typically the animator provides only a finite number of samples to
construct the view space. However, the resulting space is a continuous space. Since
for every viewpoint there is a unique view direction, we use these terms interchange­
ably. We denote the pose of the character, associated with a view direction v, as mv.
A character pose, in this book, is the resulting mesh model of the character having

2.2 The View Space 19

Pose of the
Character
(associated with

Viewpoint 1)

Viewpoint 4

Viewpoint 5
Pose of the
Character
(associated with

Viewpoint 2)

Pose of the
Character
(associated with

Viewpoint 3)

Pose of the
Character
(associated with

Viewpoint 4)

k Pose of the
Character
(associated with

Viewpoint 5)

Viewpoint 6

Pose of the
Character
(associated with

Viewpoint 6)

Fig. 2.4. A character may be potentially viewed from a set of different viewpoints at a given
instant of time. A different character pose may be associated with each viewpoint.

undergone any change that may be rigid or nonrigid, i.e., it includes mesh deforma­
tions as well as changes in the mesh due to articulation of the embedded skeleton (see
Section 3.3). We couple the character pose to the view direction. Hence, changing
the view direction changes the pose of the character.

A Space

Envelope

Time

Fig. 2.5. A view space as an aggregation of all the sets of viewpoints. One character pose is
shown for each set of viewpoints.

20 2 A Framework for View-Dependent Animation

Fig. 2.6. Tracing a camera path on the envelope of the view space generates an animation.

An animation is generated by tracing a path, P, on the envelope (see Fig. 2.6). A
point p on this path consists of the view direction associated with the point on the
envelope, v, and is indexed by time (run time of the animation) along that camera
path, £, measured from the start of the camera path. Note that the run time of the
animation should not be confused with the sampling time. We refer to points on a
camera path P, as p = (v,f). The animation generated is the sequence of the poses
mv_ associated to v on the path P viewed along the direction v. Every distinct camera
path generates a distinct animation. This is the basic idea behind the framework.

In order to create the view space, the animator provides a set of key viewpoints
or key view directions and the associated key poses. Let vk represent a key viewpoint
and mvk represent the associated key character pose. The animator can provide these
in the form of a set of sketches, a video, or a mix of the two. In the Hugo's High
Jump animation (first discussed in Chapter 1), the animator provides the sketches
for the key frames (see Fig. 1.2). We use our framework to extract the key view
directions and key poses from these sketches (we describe the process in Chapter 3).
These form the view space on which the animation is generated. Figure 2.7 shows
the sketches provided by the animator and the corresponding key views created using
the framework. In the bottom row, we show the key poses as seen from the key view
directions. Figure 2.8 shows the recovered camera centers (viewpoints) and view
directions, shown from an independent camera.

Note that for each view, the sphere centered at the look-at point (in this case the
end of the unit length view direction vector) is the set of all possible view directions
from which one can look toward that point. Hence, this sphere may be thought of as
a view space generated by just one view. The complete view space is, therefore, the
union of the view spaces generated by all the views (see Fig. 2.9).

In order to generate an animation along a camera path, P(v, t), on the envelope
of the view space, we need to generate the associated character pose, mv_, for every
point p on P. To do this, for any view direction v, we determine the r-closest key
viewpoints (closest in the metric defined on the envelope), vk.. An example of such a

2.2 The View Space 21

Fig. 2.7. The top row shows the sketched poses given by the animator. The bottom row shows
the reconstructed key views.

Fig. 2.8. The small sphere is the recovered camera position, and the line shows the view
direction vector. The larger sphere, centered at the look-at point, gives an idea of the relative
positioning of the recovered camera centers (see colour insert).

metric may be the geodesic distance between the viewpoints measured on the surface
envelope.

For clarity, henceforth we represent v* as v and vk. as v. The character pose mv_ is
then given by

mv_ = Jk w-vm-v . (2.1)
V

Thus, mv_ is a weighted blend of the corresponding ra^'s (i.e., the r-closest key view
poses). The w^'s are the corresponding blending weights. The w^s vary inversely to
the proximity of v to v [see Equation (3.14) in Section 3.6].

An example of a path, P(v, t), is shown in Fig. 2.9. Figure 2.10 shows the selec­
tion of the r-closest key viewpoint for a given position of the rendering camera on
the path.

The path shown in Fig. 2.9 is obtained by smoothly joining the key viewpoints.
Some frames from the animation obtained from this path are shown in Fig. 2.11.
Here we see that the generated animation matches the planned storyboard frames
very closely and the path generates the animation originally intended by the anima­
tor. This complete process is very intuitive for the animator as she does not have to
worry about the camera and the character separately, once the view space has been

22 2 A Framework for View-Dependent Animation

Fig. 2.9. The left image shows the path traced on the envelope of the view space. The right
image shows a close-up view of the path. The larger green sphere at the end of the path shows
the position of the (current) camera when this snapshot was captured (see colour insert).

Current Pose
(blend of pose at #1 and #2)

Current Viewpoint

Pose at selected
Key viewpoint #1

Selected /"-closest
Key viewpoints (r= 2)

Pose at selected
Key viewpoint #2

Fig. 2.10. The r-closest key viewpoints selected for a given position of the current viewpoint,
and the corresponding character pose generated as a blend of the selected key poses.

created. We show later that other paths on this view space also produce interest­
ing animations. Equation (2.1) computes mv_ as a linear blend of the r-closest key
view poses. Note that in calculating mv, the topology (vertex connectivity) of the
model does not change; only the vertex locations are altered as every vertex in m£

is a weighted blend of the corresponding vertices in key view poses. This does not,
however, guarantee an in-between pose, at an interpolated viewpoint on the camera
path, in which the mesh will not self-intersect. This happens when the key poses be­
ing interpolated are very different from each other. This is a common problem with
all interpolation-based animation techniques. The solution to this problem, in our
case, is to add another key pose at that interpolated viewpoint such that the key pose
matches the correct or desired in-between pose. We assume coherence over a local
neighbourhood around any viewpoint, both in terms of the view direction as well as
the character pose, i.e., the pose specified by the animator for any viewpoint is sim­
ilar to the pose specified for any other viewpoint in its small neighbourhood. This

2.2 The View Space 23

guarantees spatio temporal continuity in the generated animation, i.e., the animation
will not have any sudden unwanted changes in the view or pose between successive
frames.

Fig. 2.11. The top row shows the planned storyboard. The bottom row shows the final rendered
frames of the animation generated by the path shown in Fig. 2.9.

We assume that we are looking toward the character. This does not mean that
all the view directions are directed toward a particular point on the character's mesh
model. It only means that the character is in the field of view of the camera.

The view space for this example (shown in Fig. 2.9) is an instance of the general
view space formulation. The view space can have other forms depending on the
spatial location and sampling order of the sets of viewpoints used to construct it. The
conditions under which they are generated are enumerated below:

1. If all the view directions, corresponding to a set of viewpoints sampled at a given
instant of time, intersect at a common point (i.e., they share a common look-at
point), then the instantaneous view space is a single sphere (also called a view
sphere) centered at the point of intersection. This is trivially true if there is only
one view direction for some time instant. If this condition holds for all sampling
time instants, then the view space is an aggregation of view spheres. The spatial
location and sampling order of these sets of viewpoints (i.e., view spheres) gives
rise to the following view space configurations:
a. If there is only one set of viewpoints (i.e., there is only one sample), then the

view space is a single view sphere [see Fig. 2.12(a)].
b. If there are multiple sets of viewpoints and each set is located at a differ­

ent point in space and sampled at a different time instant, then the view
space is an aggregation of view spheres separated in both space and time
[see Fig. 2.12(b)]. The view space shown in Fig. 2.9 is an example of such a
case (with only one view direction for each time instant).

c. If there are multiple sets of viewpoints at the same spatial location, sampled at
different time instants, then the view space is an aggregation of view spheres
separated only in time and not in space [see Fig. 2.12(c)].

2. If all the view directions, corresponding to a set of viewpoints sampled at a
given time instant, do not intersect at a common point, then the instantaneous

24 2 A Framework for View-Dependent Animation

Envelope

View Space

View Directions

Viewpoints

View Space
Envelope

View Directions

Viewpoints

Time

(a)

Time

(b)

View Space Envelope View Directions

Viewpoints

Time

(c)

Fig. 2.12. Possible view space configurations: (a) only one set of viewpoints; (b) multiple sets
of viewpoints and each set is located at a different point in space and sampled at a different
time instant; (c) multiple sets of viewpoints at the same spatial location, sampled at different
time instants.

view space is not a single sphere. It can be considered as a collection of spheres
(one centered at each distinct look-at point). Then the complete view space is an
aggregation of such instantaneous view spaces. The view space may have any of
the three configurations analogous to the ones described above.

In the work by Rademacher [109] the view sphere formed by view-dependent
models is a special case of our view space. Here, a convex hull of the viewpoints
is computed. This partitions the view space by imposing a triangulation on it (see
Fig. 2.2). A novel view-dependent model for any new viewpoint is generated by a
barycentric blend of the key deformations at the vertices of the triangle in which the

2.3 Distance of Viewpoint 25

new viewpoint lies. This is clearly a special case of our novel view generation strat­
egy on the envelope. Here, r = 3-closest key viewpoints set up a local barycentric
basis for the novel viewpoint. The new character pose associated with this viewpoint
is computed as a weighted blend of the key poses at the selected key viewpoints,
using the barycentric coordinates of the novel viewpoint as weights. The major lim­
itations of Rademacher's formulation are

• It does not handle the distance of the viewpoint, which is crucial for incorporating
zoom effects.

• It cannot handle cases where all the camera view directions do not intersect at
a single look-at point (the center of a view sphere), thereby limiting the method
considerably.

Key Views

• Current Viewpoint

>2i Key Views Selected
^ for Blending

Fig. 2.13. Barycentric blending is biased toward choosing key viewpoints belonging to the
same triangle. Radial blending does a better job in choosing the r-closest key viewpoints.

In following sections we provide ways to deal with both of the above. Further,
the barycentric blending policy may also sometimes choose key poses that are farther
away if they belong to the same triangle as the current viewpoint (see Fig. 2.13). The
barycentric blending, however, has the advantage of being very easy to compute.
Hence, the framework allows the user complete freedom in choosing the r-closest
key viewpoints and blending the corresponding key poses. We can also use barycen­
tric blending for this purpose, if required.

2.3 Distance of Viewpoint

In the previous discussion, we developed the framework considering only the view
direction without the distance of the viewpoint. Now we add the component of dis­
tance to the framework, i.e., we want the character's pose to change as the distance of
the viewpoint changes (with or without an accompanying change in view direction).

We assume that a tuple list (dl
v,m

l
v) is associated with every view direction, v,

forming the view space. Here, dv is the distance of viewing and the associated char­
acter pose is mv. The list is sorted on the distance field of each tuple. If the list has L
elements, then 1 < / < L. So the m(,'s are the different poses of the character along a

Barycentric Blending Radial Blending

®. • ' ;
* *

26 2 A Framework for View-Dependent Animation

view direction at various distances d[. As we change the distance, d : dl
v
l < d < d®,

along a view direction, v, the resulting character pose is a blend of the character poses
mlJ and ra(,2 (see Fig. 2.14).

Fig. 2.14. Change of character pose with change of distance of the current viewpoint along a
view direction.

Given a set of key viewpoints, v, and the associated tuple lists, (dl
v, m

l
v), we want

to generate an animation for a camera path, P(v, d, f). The added parameter d_ is the
distance of the viewpoint along the unit view direction v. The vector qv = dv gives
the position of the current viewpoint (see Fig. 2.15). We determine the r-closest key
viewpoints to v on the envelope as before. Now for every key viewpoint, z>, in the
r-closest set of v, we project the vector q^ on v and find the length of the projected
vector. The projected length d v • v is the distance d projected along v. Find dll and
df from the tuple list of v such that dll < d v • v < df. It is always possible to find a
fi-v such that

dv-v = (l-j3-v)d2+fod*. (2.2)

fa locates a point, q-v, along the corresponding v vector. The pose at each q-v is given
by

mq,=(l-/3-v)m'}+l3-vmf, (2.3)

2.3 Distance of Viewpoint 27

where m1^ and m7-2 are the poses associated with dll and J ? . Then the pose corre­
sponding to the current viewpoint qv is given as a weighted blend of the pose at each
q~v, as

mqv = YJ Wqvmqv . (2-4)

where wq.v are the weights used for the blending. The process is shown schematically
in Fig. 2.15. If the tuple list of v is a singleton, then it means that only one pose is
available along that view direction at some distance. In such a case, / = 1 and the
associated mesh, i.e., the same mq.v is used for blending whenever v lies in a r-closest
set.

Fig. 2.15. Generating a new character pose for the current viewpoint from key viewpoints after
incorporating distance.

In order to illustrate this concept, we augment the view space, shown in Fig. 2.9,
by adding two more poses for a view direction at different distances. The poses are
reconstructed from sketches given by the animator, and the camera center is recov­
ered along with the distance of viewing (see Section 3.6.1). Two camera positions at
different distances with their associated character poses are shown in Fig. 2.16. Now
we trace another path for the rendering camera, specifying dp for all points on the
path, and the required animation is generated as explained above. The path traced is
shown in Fig. 2.17. This also illustrates that there exist other paths that are capable
of generating interesting animations. The framework can generate animation in real

28 2 A Framework for View-Dependent Animation

time as the animator traces out a path on the view space, thus making it possible for
the animator to explore the view space very easily.

Fig. 2.16. On the left the two camera positions are shown — note that they only differ in
the distance from the character and not the view direction. On the right the corresponding
character pose is shown, as seen from their associated cameras.

Fig. 2.17. The new path with distance variations along with the envelope of the view space.

2.5 Chapter Summary 29

Thus, in this framework we incorporate both the view direction and the distance
of a viewpoint. It is fairly simple to incorporate changes in the character pose with
changes in focal length of the camera in a manner similar to the one used for dis­
tance of the viewpoint. Hence, we capture all the different variations possible while
defining a camera in the framework. The view direction, viewpoint, and focal length
of the camera are the parameters that constitute a camera matrix. Note that the view
space is an abstract representation and can be easily used with the view parameters
encoded in the form of a camera matrix. In Chapters. 3 and 4 we present techniques
used to extract the various view parameters from the camera matrix, which are re­
covered from the given inputs.

2.4 Other Extensions

We can easily extend the framework to handle other commonly occurring scenarios
during animation. We briefly examine two of them here:

• In Section 2.2 we represent the view space as a collection of view directions
independent of the sampling order. We can, however, retain the sampling order
with the view directions and the character poses. This allows us to generate an­
imations where the action requires the view directions or character key poses to
be considered in a particular order.
Consider an example where the camera is moved back and forth along a single
view direction while the character is completing a movement sequence. If the
ordering information is not used, the character poses are sorted along the view
direction based on the distance of the camera from the character. This will lead to
poses from the forward camera movement being interleaved with poses from the
backward movement. When the animation is generated by moving the camera
along this view direction, the character pose will alternate between poses taken
from the front and the back movement sequences. This can be easily avoided by
using the ordering information.

• We have only considered moving-camera animations until now. It is, however,
possible to represent an animation with a stationary camera in the framework.
The character poses are ordered by key frames and associated with a constant
view direction. The animation is generated using normal keyframing. It can
be seamlessly blended with a moving-camera animation by simply maintain­
ing the desired continuity among the cameras in successive frames. Hence, the
framework can easily fit into a conventional animation work flow. We explain
this in more detail in Section 3.6.3.

2.5 Chapter Summary

In this chapter, we first start by examined the prior work done toward developing
different representations of character poses and rendering cameras. Animations are

30 2 A Framework for View-Dependent Animation

created using abstract representations for a space of character poses, like simplicial
complexes and spatial key framing. Different methods for representing the render­
ing camera have also been reported in the literature. These include multiprojection
rendering, nonlinear projections, and cognitive controls for automatic cinematogra­
phy. We provide a single representation that embodies the camera and character pose
association and allows us to generate animations from it.

Next, we have discussed the related work, which are based on the idea of view
dependence of the character pose. We start with the work on view-dependent geom­
etry. We see that the technique introduces the idea of a geometry that changes with
the viewpoint. Some work has also been done on generating 2D illustrations contain­
ing observer-dependent deformations. We present a comprehensive, semiautomatic
authoring solution for view-dependent animations that is easy to use and efficient.

We have presented a theoretical framework that captures the rich diversity offered
by view-dependent animations into a compact representation. Key viewpoints and as­
sociated key poses of the character provided by the animator form a view space. Any
path traced on the envelope of this view space generates a view-dependent animation.

We also show how to incorporate distance of the viewpoint into the view space.
Hence, we can generate animations where the pose of the character changes in re­
sponse to changes in the distance of the viewpoint from the character. We can easily
incorporate changes in the focal length of the camera, as a parameter to perform
view-dependent animation, into the view space.

Using the envelope to characterize a view space allows us to have a better un­
derstanding of the concept of staging actions while generating a view-dependent
animation. In subsequent chapters we present the techniques used to implement this
framework and to create view-dependent animations from multiple types of input
like sketches and videos.

3

View-Dependent Animation from Sketches

In Chapter 2, we introduced a framework for representing view-dependent anima­
tions. The view space (see Section 2.2) captures all the information necessary to
generate a view-dependent animation. This view space, however, has to be physi­
cally realized from the inputs available to the animator. In this chapter we present
the use of sketches to create such a view space and generate a view-dependent ani­
mation [25]. Before we explain this technique, we discuss the prior work that exists
in the area of creating animation from sketches.

3.1 Prior Work

There have been numerous attempts toward designing systems that try to retain the
expressivity and ease of creation of a 2D sketch while allowing generation of 3D an­
imations and character models from it. Sketches have been used for creating, posing,
and animating 3D models of characters. We first look at the various attempts made
toward creating character models from a sketch.

3.1.1 Creating character models from sketches

The SKETCH [143] system combines mouse gestures and simple geometric recog­
nition to create and modify 3D models. It uses a gesture grammar to create simple
extrusion like primitives in orthogonal view. The Teddy [66] system presents tech­
niques for modeling from sketches, i.e., given a drawing, the system tries to recreate a
geometric description of the scene. The system allows creating a surface by inflating
regions defined by closed strokes. Strokes are inflated so that portions of the mesh
are elevated based on their distance from the stroke's chordal axis. Teddy also allows
users to create extrusions, pockets, and cuts to flexibly edit the models. The limitation
of SKETCH and Teddy, however, is that the inferred geometry is often incorrect, and
these errors become more and more apparent with changes in the viewpoint. In a later
work, Igarashi and Hughes [65] present in SmoothTeddy, a technique to refine the

32 3 View-Dependent Animation from Sketches

irregular polygonal meshes resulting from the original Teddy algorithms. A beautifi-
cation process, based on the Skin algorithm [98], generates near-equilateral triangles
with a near-uniform distribution of vertices on the surface to hide irregularities in
the original polygonal model. It is then refined to generate a dense polygonal mesh
that smoothly interpolates the beautified mesh [see Fig. 3.1(a)]. Cherlin et al. [26]
also present a sketch-based system for the interactive modeling of a variety of free-
form 3D objects using just a few strokes. It draws on conventional drawing methods
and work flow to derive interaction idioms that should be familiar to illustrators.
They develop algorithms for parametric surfaces using rotational and cross-sectional
blending. The system allows the modeling of small, simple parts of a character. The
user then directs the assembly of these parts using standard techniques like transla­
tion and rotation by clicking and dragging with the mouse. An example of a character
created by such an assembly is shown in Fig. 3.1(b).

(a) A bird designed using SmoothTeddy (im- (b) A wizard designed using system
age courtesy Igarashi and Hughes [65]) developed by Cherlin et al. (image

courtesy Cherlin et al. [26])

Fig. 3.1. Examples of character models made from sketches.

Cohen et al. [28] present Harold, a system that allows an artist to draw on the
image plane and thereby express a stylized 3D world. They make simplifying as­
sumptions about the underlying geometry. A billboard is used as the primitive ge­
ometric structure to model the scene. A billboard is typically a plane with an im­
age texture mapped onto it. This plane rotates about some point or axis to face the
viewer as much as possible. When the user draws a stroke over a billboard, their sys­
tem simply projects the stroke onto the billboard and stores it; then, in order to dis­
play the billboard, they rerender each stroke, rotated appropriately. Objects in Harold

3.1 Prior Work 33

maintain the distinct stylistic appearance and subtleties imparted by the user, and its
worlds, thus maintain their intended style and character as the viewpoint changes.

Tolba et al. [127] present a drawing system for composing and rendering perspec­
tive scenes. They use projective 2D points to compose various renderings of a scene
and support perspective drawing guides, 3D-like viewing and object manipulation,
scene illumination and shading, and automatic shadow construction. The 2D repre­
sentation, however, has limited use for 3D animation. Sykora et al. [122] present an
example-based framework for computer-assisted cartooning. They design new char­
acters and poses by combining fragments of original artwork. The user can simply
select an interesting part in the original image and then adjust it in a new composition
using a few control scribbles. The method works on images as input, and thus, the
cartoons are generated in 2D.

Another approach is to introduce 3D information into a 2D animation system
by manual ordering of layers [96] or by underlying simplified 3D models like
stick-figure skeletons [105]. Zenka and Slavik [130] present a system that when given
a 2D sketch, creates a 3D polygon mesh describing the skeleton. It thus creates a hy­
brid sketch that can be rotated like a 3D object. The user can see the object from
various angles without having to create a full 3D model or drawing the object again
for each required view.

3.1.2 Posing character models from sketches

We want to pose the character's model in order to match it with the character's pose
in the sketch. We do not want to create the model from the sketch. Early attempts at
posing stick skeleton figures from sketches are made by Sabiston [113]. This system
uses a simple reverse projection algorithm to reconstruct a skeleton pose from the
sketch. The projection considered in this system is orthographic, and it resolves the
depth ambiguity by user interaction. In another work, Hecker and Perlin [55], de­
velop a sketch-based animation system using a touch-sensitive tablet. Their system,
however, relies completely on the artist to resolve any ambiguity.

In a recent work, Davis et al. [36] provide a simple sketching interface for artic­
ulated figure animation. The user draws the skeleton on top of the 2D sketch. Then
they reconstruct the various alternative poses of a 3D stick figure corresponding to
the 2D pose, using techniques given by [87] and [123]. The user is allowed to pick the
desired pose and perform a few corrections to it. This interface is supported by pose
reconstruction and optimization methods specifically designed to work with impre­
cise hand-drawn figures. The system provides a simple, intuitive, and fast interface
for creating rough animations that leverages the users existing ability to draw. The
resulting keyframed sequence can be exported to commercial animation packages
for interpolation and additional refinement. The skeleton posing technique used here
is in spirit similar to the one used in our framework (see Section 3.5).

In another contemporary work, Li et al. [91] present a method for stylizing ani­
mations through drawings. They allow an animator to modify frames in the rendered
animation by redrawing the key features such as silhouette curves. These changes
are then integrated into the animation. To perform this integration, they divide the

34 3 View-Dependent Animation from Sketches

U *x "C *k "1
Hi /o*>\ #*^\ FSA £ n
HP (-v fwy InP W

(a) (b) (c) (d) (e)

Fig. 3.2. (a) The motion captured movement is stiff and lacks personality, (b) example image
was drawn by the animator to better express the character's personality, (c) motion editing
matches the pose of the character is closer to the example image, (d) after layered warp, the
mesh is warped to the example drawing's shape, (e) for a subsequent frame, the warping field
is propagated (images courtesy Li et al. [91]).

changes into those that can be made by altering the skeletal animation and those that
must be made by altering the character's mesh geometry. To propagate mesh changes
to other frames, they use a modified image-warping technique that takes into account
the character's structure. In this paper, the skeletal deformations are obtained by man­
ually modifying a standard motion capture stream. It relies on the animator to find
the frame in the original rendered animation that best matches the sketch and then
creates a deformation field to warp the silhouette by matching the curves in 2D. The
process is illustrated through an example in Fig. 3.2.

3.1.3 Animating character models from sketches

Some work has also been done on the creation of animation using sketch based in­
terfaces. In an early work, Librande [93] presents a system which learns an example
space from a set of vector drawings. It can then produce the in-between frames by
constructing an interpolation function on the example space. The animation gener­
ated by this system is in 2D.

Thorne et al. [125] demonstrate motion doodles, a sketching interface for gener­
ating character motion. A continuous sequence of lines, arcs, and loops are parsed
and mapped to a parameterized set of output motions that reflect the location and
timing of the input character sketch (see Fig. 3.3). The system supports different
types of motions in 2D and a subset of them in 3D. It is useful for fast creation and
quick experimentation with various kinds of character motion. However, it cannot
resolve ambiguities introduced by 3D mapping, and it is not suitable for animations
that require unique or detailed motions.

Mao et al. [97] present an interface for sketching out rough 3D stick figure an­
imation. The system allows the users to draw stick-figures with automatic figure
proportion control. It utilizes figure perspective rendering, and it introduces the con­
cept of thickness contrast as a sketch gesture combined with some other constraints

3.2 Overview of the Pipeline 35

An
Fig. 3.3. A 2D motion sketch and the resulting animation (step, leap, front-flip, shuffle, hop)
created using the motion doodles system (images courtesy Thorne et al. [125]).

or assumptions for pose recovery. The resulting pose can be further corrected based
on physical constraints of the human body. Once a series of 3D stick figure poses is
obtained, the user can sketch out motion paths The resulting 3D animation can be
exported to VRML.

To summarize, we find that purely geometric approaches for creating 3D models
from sketches like [66] and [143] suffer from a fundamental drawback — not all
2D drawings of a character can actually be generated from one 3D model. Dynamic
view-dependent models are an ideal solution for this problem. In fact, the variations
present in 2D drawings that cannot be captured by a conventional geometric 3D
model (like a triangular mesh model) is one of the prime motivations behind using a
view-dependent model [109].

We want to use sketches of a character to extract camera or view parameters from
it and to pose the 3D model of the character, in order to create a view space of the re­
covered views and their associated character poses. Existing works discussed above
often work only with scaled orthographic cameras and have no explicit notion of a
camera recovery. We recover the best full projective camera and view direction that
matches the sketch (see Section 3.4). We show that this flexibility in the recovery of
the camera allows for dramatic effects, such as close-up shots, in the resulting anima­
tion. In our case, the camera recovery technique requires minimal user interaction to
specify correspondences. This technique also allows the user to correct or refine the
automatically reconstructed poses. We, further, match the deformation of the char­
acter's mesh to the sketch, which cannot be recovered by matching the skeletal pose
only.

We have developed a pipeline to generate a view space from a set of sketches,
which in turn allows us to generate a view-dependent animation. In the next section,
we present an overview of this pipeline.

3.2 Overview of the Pipeline

Our technique for view-dependent animation generates a view space from a set of
sketches using the pipeline we have developed (shown in Fig. 3.4). The animator

36 3 View-Dependent Animation from Sketches

provides a set of sketches as input. We assume that the 3D base mesh model of the
character is also given. The pipeline processes one sketch at a time.

/
/
H_

: /

/
/

tl
T
/ Sketch /

Base Mesh /

Mode \ J

1
Camera Recovery
(semiautomatic)

A

i

i

!

F

i

Character
Pose Recovery

(semiautomatic)

„/
L

/ View Space /

/ /

t
View-Dependent/ '

Model / \

Fig. 3.4. Schematic diagram depicting the pipeline to create a view space from a set of
sketches.

"Hlk
(a) (b) (c) (d) (e)

Fig. 3.5. Creating a view-dependent model from a sketch: (a) input sketch, (b) base mesh
model, (c) recover a camera to orient the base mesh, (d) reconstruct the skeleton pose, and
(e) deform the mesh to find the best possible match with the sketch.

Figure 3.5 shows the various stages of the pipeline using an example sketch and a
base mesh model as input. We first align the viewpoint with the intended view direc­
tion in the sketch [see Fig. 3.5(c)] by recovering the camera using computer vision

3.3 Inputs 37

techniques. Then, we find the best match of the pose of the character1, when seen
from the recovered view direction, with the sketch by moving the skeleton embed­
ded inside the mesh. The mesh model thus obtained is called a posed mesh model
[see Fig. 3.5(d)]. The final stage deforms the mesh to match the silhouette of the
model, as seen using the recovered camera, with the sketched character. The final
mesh model is called a deformed mesh model [see Fig. 3.5(e)]. The final character
pose, output at the last stage of the pipeline, together with the recovered camera is
called the view-dependent model. Note that the camera recovery and the character
pose recovery are semiautomatic processes and require some interactive inputs. This
process is repeated for every sketch, and all the resulting view-dependent models
together form the view space.

We now describe this process in detail in the following sections. To bootstrap the
process, we need an additional set of inputs, which are created as described in the
next section.

3.3 Inputs

The primary inputs to the pipeline are a sketched pose [see Fig. 3.5(a)] provided by
the animator and a base mesh model [see Fig. 3.5(b)]. The base mesh model is a
3D mesh model of the character to be animated, made using any modeling software.
We embed a skeleton into the mesh and enclose the mesh in a lattice to facilitate
the automated character posing process (explained in Section 3.5). We describe the
methods for creating these.

3.3.1 Interactive skeleton and lattice construction

We have implemented a simple interactive technique for skeleton construction in­
spired by Capell et al. [24]. It allows a skeleton, embedded in the mesh, to be con­
structed interactively in just a few minutes. The user creates a joint by clicking on
the object with the mouse. If the ray through the clicked point (from the camera pro­
jection center) intersects the object at least twice, a joint is placed midway between
the first two intersections. This positioning scheme produces joints that are centrally
located inside the object. Two joints are selected to define a bone. When the whole
skeleton has been created, the user selects a joint as the root, and a transformation
hierarchy is created automatically. We give an example of a skeleton embedded in
the mesh using this technique in Fig. 3.6(a).

The skeleton need not correspond to an anatomically valid skeleton (in fact the
object may not even have a skeleton, for example, an inanimate object like a guitar
or a lamppost). The skeleton is a control mechanism provided to the animator to
help define the pose of the character with ease. The user has complete flexibility and
control over the way the skeleton is defined.

1 See Section 2.2 for a definition of pose as used in this book.

38 3 View-Dependent Animation from Sketches

(a) Skeleton embedded inside the (b) Lattice enclosing the mesh model
mesh model

Fig. 3.6. Example input for the pipeline.

The mesh is also enclosed in a lattice. The lattice is made up of tetrahedral cells
and encloses the base mesh model. The lattice is defined in a manner such that each
lattice cell is associated with one skeleton bone. Thus the lattice construction is based
on the way the underlying skeleton has been defined. We give an example of such a
lattice in Fig. 3.6(b). Further details about the lattice and skeleton construction can
be found in [70].

We now present the various steps of the pipeline in detail and explain how we
create view-dependent animations from sketches.

3.4 Recovering the Camera

The first step in the pipeline (see Fig. 3.4) is camera recovery. In order to pose the
character as drawn in the sketch, we need to first recover the intended view direction
from the sketch. We describe the process for a single sketch in which we find a
camera such that the projection of the character's model using the recovered camera
is aligned to the sketched pose [see Fig. 3.5(c)]. This process is repeated for every
sketch the animator provides.

The animator usually provides the sketches on paper. Then they are scanned into
the computer. The pipeline works on these scanned sketches. The user clicks corre­
spondences between the sketched pose and the skeleton joints. The skeleton joints are
marked on the sketch. We can handle two broad categories of sketches. For sketches
of the character, correspondences are very easy to specify as the user can locate the
joints on the sketch easily and accurately [see Fig. 3.7(a)]. The second category of
sketches that we can handle are rough mannequin sketches [see Fig. 3.7(b)]. Such

3.4 Recovering the Camera 39

sketches are easier and faster to draw and are often used for rough pose planning
during early stages of the animation (as is also shown in Fig. 1.1). If the bone pro­
portions of the mannequin are roughly the same as that of the character, then locating
the skeleton joints on such a sketch is quite intuitive for the animator and correspon­
dences can be approximately specified very quickly. The camera recovery engine is
robust enough to determine a feasible camera for the approximately placed joints and
works equally well with both these categories of sketches. We demonstrate the use
of mannequin sketches in the Olaf Reloaded animation, where the whole animation
has been generated from such sketches.

(a) A sketch of a character (b) A sketch of a mannequin

Fig. 3.7. Possible input sketch types.

The joints used during camera recovery have to be rigid relative to a change in
pose i.e., the joints must not have moved from the base mesh model to the posed
mesh model. The user needs to click the position of these rigid joints (see Fig. 3.8).
The first point marked on the image must correspond to the root of the skeleton. This
repositions the image coordinate system origin accordingly (as the root forms the
origin of the skeleton's coordinate system). The minimum number of joints whose
positions must be clicked on the sketch can vary from 3 to 6 depending on the type
of the camera to be recovered. An orthographic camera has only five degrees of free­
dom and hence requires only three point correspondences (see Section A.3). A full
projective camera has eleven degrees of freedom and hence, requires six point cor­
respondences if it is to be determined completely. Subsequently the two point lists
(2D sketch points and 3D skeleton joints) are normalized. The full projective camera
is computed using the Normalized Direct Linear Transformation Algorithm and the
affine camera is computed using the Gold Standard Algorithm (for further details see
Appendix A and [52]). These are numerically robust techniques and work well with

40 3 View-Dependent Animation from Sketches

(a) A sketch with rigid joints marked (b) The corresponding joints marked
on the skeleton

Fig. 3.8. Marking of joint correspondences.

hand-clicked correspondences. The weak perspective and orthographic cameras are
recovered using techniques similar to those used for affine cameras. In most situa­
tions, we have worked with the full projective and affine cameras. The full projective
camera is better suited for cases where close-ups of the characters are required (i.e.,
the distance of the camera from the character is comparable to the width of the char­
acter along the view direction). The affine and other cameras are better for cases
where the camera is further away from the character (i.e., the distance of the camera
from the character is considerably more than the width of the character along the
view direction) and hence the perspective foreshortening effect is not pronounced.
The full projective camera is of the form

P =
P\\ Pn P\3 Pu
Pl\ P22 P23 P24

P3\ P32 P33 P34

(3.1)

The camera thus estimated projects the clicked joints on the corresponding points on
the sketch. If the camera recovered is P and the camera center is C then we must
have

P C = 0 . (3.2)

So the camera center is recovered as the right null space of the camera matrix. For
the full projective camera we get a finite camera center, but in case of the affine,
weak perspective, and orthographic cameras the camera center is a point at infinity.
In such cases, however, we are only interested in the camera view direction, i.e.,
the unit vector in the direction of the line joining the camera center with the look-at

3.5 Posing the Character 41

point, and this is recoverable in all cases. The anatomy of the projective camera is
given in Section A.2.

Some care has to be taken while choosing the rigid joints. All the joints should
not lie nearly on the same plane. If this is the case, then the solution returned by the
algorithm is unique modulo a flip about the image plane. The principal axis vector is a
vector along the principal axis of the camera, directed toward the front of the camera.
This can be used to detect the condition when the camera recovered is actually behind
the image plane. Such cases are easily corrected either by clicking a few out-of-plane
joint correspondences and recomputing or by simply flipping the previously obtained
solution. If the requisite number of rigid joints cannot be identified, vertices of the
mesh, satisfying the rigidity requirement, can be used for point correspondences.

When we look toward the 3D character using the recovered camera, it ap­
pears aligned with the sketched pose. We refer to this recovered viewpoint as
a key viewpoint. Next we deform the mesh model and change its pose to match the
sketch.

3.5 Posing the Character

In this section we describe the process of posing a character from a single sketch
and obtaining a view-dependent model. We use a two-layered deformation engine
for this purpose. In the first layer we match the skeletal pose of the character with the
sketch, to obtain the posed mesh model, using a view-dependent posing algorithm
(see Sections 3.5.1 and 3.5.2). In the second layer we match the silhouette of the
mesh model of the character (in the recovered view) with the sketch, to obtain the
deformed mesh model, using a view-dependent mesh deformation algorithm (see
Sections 3.5.3 and 3.5.4). We look at both the layers one by one.

3.5.1 Skeleton-based posing

We first match the overall or gross level pose of the sketched character. This can be
done by changing the articulation of the skeleton embedded in the mesh.

Inverse kinematics

In order to pose the skeleton we make use of inverse kinematics (IK). Inverse kine­
matics is most commonly used to interactively pose articulated characters. We want
to automate the posing process as much as we can, but we also want to let the anima­
tor have interactive control. This way the animator can manually tweak the automati­
cally recovered poses if so desired. Other variants of IK, like style-based IK [49] and
mesh-based IK [121] may be used to enhance performance of the posing algorithm
we present. This, however, would require no change in the pipeline or the posing
algorithm we present later (see Section 3.5.2).

A skeleton is modeled as a collection of rigid objects (also called links or bones)
connected by joints. The skeleton forms a rooted tree, with a special joint marked as

42 3 View-Dependent Animation from Sketches

the root. We define a kinematic chain as any sequence of joints in this skeleton such
that the sequence does not span across branches in the tree. We define the starting
joint of this kinematic chain as the base joint for the chain and the far-end (distal)
joint as the end-effector. Note that the end-effector can even be a joint that is not a
leaf, as the chain can start and end anywhere as long as it does not span a branch.
The base is fixed and cannot move, while the end-effector is free to move.

Given a vector q of known joint variables, the forward kinematic problem of
computing the position and orientation vector x of the end-effector is simple to solve,
and has the form

x = / (q) . (3.3)

But if the goal is to place the end-effector at a specified position and orientation x,
then determining the appropriate joint variable vector q to achieve the goal requires
a solution to the inverse of Equation (3.3),

q = r](x). (3.4)

Solving this inverse kinematic problem is not simple. The function / is nonlinear,
and the inverse mapping of Equation (3.4) is not unique — there may be many q's
for a given x. A natural approach is to linearize the problem about the current chain
configuration. Then the relationship between the joint velocities and the velocity of
the end-effector is

x = 7(q)q . (3.5)

If J = df/dq is the Jacobian matrix, then the inverse relationship becomes

q = j\q)x. (3.6)

Implementation

We use an exponential map parametrization for joint rotations as given by [48]. Ev­
ery nonzero vector in R3 has a direction and magnitude. We can associate a rotation
with each vector by specifying the direction as an axis of rotation and the magnitude
as the amount of rotation. If we augment this relationship by associating the zero
vector with the identity rotation, the relationship is continuous and is known as the
exponential map (see Appendix B for more details on the exponential map). The ex­
ponential map is used as it does not require repeated normalization (like quaternions)
to stay in a meaningful subspace, and it results in smaller dimension state vectors,
which leads to faster performance. It is simple to compute the Jacobian at a node in
a transformation hierarchy with respect to all the end-effectors below it in the hierar­
chy. This is used in the inner loop of the inverse kinematics solver and hence needs
to be fairly fast. The exponential map turns out to be a very good choice for this pur­
pose, as it allows the inverse kinematics posing mechanism to respond at interactive
rates.

Once the Jacobian is obtained, we can solve for the change in the joint state vec­
tor. Here we find a least-squares solution using the pseudoinverse of the Jacobian.

3.5 Posing the Character 43

We compute the pseudoinverse of the Jacobian using the Singular Value Decompo­
sition (see [47]). However, near a singularity, the problem becomes ill-conditioned,
and the norm of resulting least-squares solution may tend to infinity. So it needs to
be regularized, which we do using damped least-squares [126]. Once the pose of a
chain has been computed, the state vector for the chain is updated appropriately and
the change in joint transformations is propagated throughout the skeleton to pose the
skeleton. A detailed description of the techniques mentioned above may be found
in [13] and [136].

Inverse kinematics finds the best possible kinematic chain configuration to reach
the specified goal by iteratively searching in a space of possible solutions. Chain
configurations where the motion at any of the joints exceeds permissible limits are
not valid solutions and are discarded to prune the solution search space. This is done
using joint limits. Usually, joint limits are specified as constraints in IK. We have
implemented spherical joint limits using joint reach cones. It is a natural representa­
tion of the range of allowed motions for an articulated body segment, borrowed from
biomechanics. We have used the techniques of Wilhelms and Van Gelder [137] for
specifying and enforcing joint limits in IK using reach cones. Reach cones can be
specified interactively, and can be turned off if the animator so desires. Sometimes
animated character's have range of motions that are exaggerated when compared
with a normal human. Since reach cones give a visual representation of the joint
limits being enforced, they are more easily specified than other joint constraint tech­
niques, even in unconventionally moving characters. Reach cones can be efficiently
implemented and have no discernible effect on interactive speeds of the IK posing
system. Reach cones are explained in greater detail in Appendix C.

(a) (b) (c)

Fig. 3.9. Blended skinning: (a) a part of the mesh with the embedded skeleton and the lattice,
(b) deformation in the lattice as the skeleton articulation changes, (c) resulting deformation of
the mesh due to (b).

Inverse kinematics poses the skeleton. For posing the mesh model, the mesh
is made to move with the skeleton using in essence a blended skinning [83, 84]
approach. We use the lattice that encloses the mesh to do this. During construction,
every cell of the lattice is associated to some skeleton bone. The cell vertices may be

44 3 View-Dependent Animation from Sketches

shared among two or more cells. So the cell vertices have weights assigned to them
that denote the degree of influence of the corresponding underlying skeleton bones on
those vertices. Every lattice cell vertex also has its own coordinates recomputed in the
local coordinate system of their associated bones. When the underlying bones move,
the new position of the lattice cell vertex is computed using bones blending [77].
Every lattice cell is also associated with all the mesh vertices contained inside the
tetrahedral lattice cell. Every mesh vertex is associated to at most one lattice cell. To
move the mesh, the new positions of the mesh points contained in a lattice cell are
calculated using their barycentric coordinates. This results in a smooth deformation
of the mesh as the skeleton is moved (see Fig. 3.9).

Using only IK, however, requires extensive user interaction to pose the mesh. We
propose a novel view-dependent posing algorithm to pose the 3D mesh model of the
character.

3.5.2 View-dependent posing algorithm

Interactive posing using IK though possible, requires extensive user intervention.
The number of degrees of freedom that the user has to manipulate can seem over­
whelming. Thus we propose an algorithm that restricts IK to find solutions that are
consistent with the recovered camera.

Before the algorithm can start, the user needs to specify the joint correspondences
on the sketch for all the joints that need to be moved during the posing and that
were not marked during the camera recovery phase (see Section 3.4). Now we define
the goal as the desired 3D position of the end-effector of the kinematic chain. The
algorithm now proceeds as given in Algorithm 3.1.

Require: The camera must be estimated before this algorithm can be run.
Require: Correspondences for all the joints to be deformed must be marked.

1 begin
2 repeat
3 Select a simple kinematic chain.
4 Back project 2D end-effector position as the 3D goal using the

recovered camera.
5 Run IK to make the chain reach the goal.
6 until the desired pose has been achieved
7 end

Algorithm 3.1: View-dependent posing algorithm.

The user marks out a kinematic chain that needs to be deformed. For this purpose,
the user only has to click on the joint names in a hierarchical graphical user interface
(GUI) to identify the joints in the chain on both the sketch and the skeleton. The

3.5 Posing the Character 45

position of the end-effector is back projected from the sketch into 3D space using the
pseudoinverse of the recovered camera (see Fig. 3.10). This is done in the following
manner.

Back Projected Ray

Point Nearest to Current End-Effector
(Projected Goal Position)

covered Camera

Fig. 3.10. Back projecting the goal using the recovered camera.

Let the end-effector position on the sketch be e = (xe,ye) and the recovered
camera be P [P is of the form given in Equation (3.1)] with the camera center as C,
then projecting e back using P+ (the pseudoinverse of P) gives us a 3D ray Re,

R, = C + A (P+ • e) , (3.7)

where e is eT expressed in homogeneous coordinates, i.e., e = (xe,ye, 1)T.
Now we find the point (X, Y, Z) on this ray that is closest to the current position

of the end-effector joint in 3D. If the current end-effector position is given by E =
(Xe, Ye, Ze), then the new position of the end-effector Enew is given by the solution of
the following minimization:

min = (X - Xef + (Y - Yef + (Z - Zef
(X,Y,Z)

subject to

(Pll ~ P3\Xe) X + (pi2 - P32Xe) Y + (/?i3 - />33*e) Z + pU = /734 Xe ,

(j>2\ ~ P3\ye) X + (p22 ~ P32ye) Y + (/?23 ~ P 3 3 ^) Z + P24 = P34 ye • (3-8)

Enew is the goal position in 3D. The constraints arise from the fact that P must project
the point (X, Y,Z) to e = (xe,ye) on the sketch. So the constraints embody the camera

46 3 View-Dependent Animation from Sketches

projection equation. Once we have projected the goal, the IK layer takes over and
deforms the chain in 3D to make it reach the goal (see Fig. 3.10). Since IK is tied
to the camera recovered and is guided by it to find a pose that satisfies the view-
dependent constraint, the projection of the posed mesh model matches (in terms of
the skeletal pose) the sketch.

The algorithm is numerically stable and works at interactive rates. Solving IK
involves inverting the Jacobian using the Singular Value Decomposition and regu­
larizing the solution near singularities using damped least squares (as explained in
Section 3.5.1). The minimization to enforce the projection constraints can be ef­
ficiently solved as a constrained optimization by using Lagrange multipliers. The
performance of the algorithm is dependent on the accuracy of the camera recovery
phase. The algorithm works better with the joint reach cones turned on, as then the
solution is better constrained.

The overall configuration of the chain achieved by the algorithm may not be the
one desired by the animator. Often the easiest way around this is to consider short
chains (i.e., chains with up to 3 segments). In all the experiments we performed,
the algorithm always found the desired chain configuration for short chains. Short
chains may result in more number of chains being selected, even then the number
of joints to be clicked are about 2 to 10. This is still easier than posing directly in
three dimensions. The algorithm works best if the small chains starting from a fixed
root are successively posed as we move out toward the end-effector. This strategy of
chain selection can be programmed, making the algorithm completely automatic.

The algorithm always selects the point on the ray that is closest to the current
end-effector position as the new goal. The reason for assuming this as the new goal
position is that the algorithm chooses a point that causes least movement or change
from the existing end-effector position. If there is a cost or energy associated with
the distance moved by the kinematic chain, then the algorithm makes a choice that
minimizes this energy. The pose reconstruction is unambiguous as it always finds
the best possible pose, which minimizes the reprojection error from the recovered
camera. If, however, the above process does not pose the chain to the animator's
satisfaction then the animator can still correct the pose of the chain by tweaking the
bone positions interactively using IK.

This process is repeated for every chain till the desired pose of the complete
skeleton is achieved. In the current implementation the posing process poses a single
chain at a time. This can be easily extended to simultaneous solution of multiple
chains reaching for multiple goals using techniques given in [12]. The lattice deforms
the mesh whenever IK repositions a chain. Thus at the end of the posing phase we
have the posed mesh model [see Fig. 3.5(d)].

Further, we can pose elements of the character that may not be there in the sketch
using the interactive posing facility available in the IK layer. For example, in one of
our results the character has a tail, but the input sketches are mannequin sketches and
do not have a tail in them; so the tail is interactively posed by the user.

The posed mesh models become the key deformations associated with the recov­
ered cameras that are the key viewpoints, and these constitute the view-dependent

3.5 Posing the Character 47

models. It may be argued that these are just posed and not deformed, but the geom­
etry of the mesh model has changed from the base mesh model (due to the lattice
layer moving the mesh along with the skeleton), and animating using these mod­
els produces a view-dependent animation where the geometry responds to changes
in view. We illustrate this with an animation sequence in the results. If, however,
the mesh is further deformed using a view-dependent mesh deformation algorithm
in order to make it match better with the sketched character, we get an improved
view-dependent model.

3.5.3 Mesh deformations

Animators frequently tend to exaggerate or stylize deformations of animated charac­
ters (e.g., a character's head develops a large bump when he gets hit by a hammer).
Such deformations are not the result of articulation and hence cannot be reproduced
by just using IK. In order to model such deformations, the mesh is deformed using
the technique of direct free-form deformation (DFFD) [64, 80]. We choose DFFD
to perform the deformation because it is simple and efficient. Since it works with
any general control lattice, and we have already defined a lattice enclosing the mesh,
it is the most convenient choice. The lattice is made of tetrahedral cells. Since the
tetrahedron is a simplex, it allows a linear barycentric basis. Using this linear pa­
rameterization for defining local coordinates inside the tetrahedron makes the DFFD
computations extremely fast and efficient.

The free-form deformation (FFD) method deforms an object by first assigning
to each of its points within the deformation lattice a set of local coordinates. Once
the control points are moved, the new location of an object point is determined by
a weighted sum of the control points. The weights are functions of the coordinates
originally assigned to the point. Hence, a positional change of the control points
changes the location of the points. Direct free-form deformation involves moving a
set of selected points of the object to some target locations by determining the change
in control point positions that will effect this change. Let q be the vector of points to
be moved, and S be a vector of all the control points, then

q = BS , (3.9)

where B is a matrix of all the blending functions. If qnew is the vector with the new
positions of the points, then qnew = B(S + AS) or

Aq = BAS, (3.10)

where AS is the change in the position of the control points and Aq is the change
in position of the object point. We are given Aq (as the difference between qnew and
q), and we want to find AS that satisfies Equation (3.10). This can be solved by
computing the pseudoinverse of B.

We use the lattice enclosing the character mesh (see Section 3.3) as a control
lattice for DFFD. Our implementation allows the user to deform the mesh interac­
tively by direct manipulation with mouse clicks. The user can move groups of points

48 3 View-Dependent Animation from Sketches

as well as individual mesh points. For deformation of the mesh consistent with the
view, we have a view-dependent mesh deformation algorithm that couples the pro­
cess of deforming the mesh with the recovered camera. We describe this algorithm
below.

3.5.4 View-dependent mesh deformation algorithm

Manually moving mesh vertices to match them with the sketch is a very cumbersome
process. Since such a matching is guided by only visual inspection, it is error prone
and inaccurate. Hence, we propose an algorithm to restrict the solution space of
DFFD by the projection constraints imposed by the recovered camera. This allows
us to closely match the contours of the 3D mesh with the curves of the sketched
character when the mesh is viewed using the recovered camera.

For the algorithm, the user first needs to mark correspondences by clicking points
on the sketch and the posed mesh model. These points are the inputs to the algorithm.
We call these points the input points. These points usually belong to the silhouette
curve of the sketch as we want to match the silhouette of the sketch with the mesh.
The points in 3D where these input points are to be moved are called the target points.
Algorithm 3.2 describes the process. The back projection and target point selection

Require: The camera must be estimated before this algorithm can be run.
Require: Correspondences for all the input points to be moved must be

marked.

I begin
2 repeat
3 The 2D points on the sketch are projected back in 3D space as a ray,

using the recovered camera.
4 The points on these rays that are closest to their corresponding points

in 3D are chosen as the target points.
5 The set of input points and target points are passed on to the DFFD

layer, which moves the input points to the target points.
6 until the desired deformation is achieved
7 end

Algorithm 3.2: View-dependent mesh deformation algorithm.

is done in the same manner as described in Section 3.5.2 for the skeleton-based
posing. In this case, e = (xe,ye) become the 2D points on the sketch. P is again
the recovered camera with the camera center as C. If the input 3D point is E =
(Xe, Ye,Ze)9 the target point (X, y,Z) can be found by solving Equation (3.8) (see
Fig. 3.11). The constraints ensure that P projects the computed target point (X, Y,Z)
to e on the sketch. When the input mesh points move to the target points, the DFFD
algorithm recalculates the position of the affected lattice cell vertices keeping the

3.5 Posing the Character 49

Back Projected Ray

Deformed Mesh

Point Closest to the Input Point on the Ray
(Target Point)

Original Mesh Input Point

Sketch

Point Clicked on the Sketch

Recovered Camera

Fig. 3.11. Back projecting the input mesh point using the recovered camera and deforming the
mesh.

basis parameterization of the input mesh points constant. The rest of mesh vertices
in the affected lattice cells suitably deform when the lattice cell vertices move.

The algorithm responds at interactive rates and is numerically stable. Direct free-
form deformation computations involve the computation of the pseudoinverse of the
matrix of blending functions. This is done using the Singular Value Decomposition.
It can be proved that the pseudoinverse gives the least-squares solution to the DFFD
problem (see Section 3.5.3). It is important that the input and target points are chosen
consistently, i.e., the points in the neighbourhood of a point should move almost
similarly to ensure smooth variation of the surface of the mesh. It is also important
that points that should not be moved by the algorithm should be explicitly clamped
down, by specifying the target points for those points as the input points themselves.
If, however, the algorithm does not deform the mesh to the user's satisfaction, the
user can interactively refine the mesh deformation by manually adjusting the mesh
points.

Note that if the lattice is considerably coarse as compared to the mesh, its effect
is not localized to a very small area. A modified version of the algorithm uses a radial
decay function (this feature can be turned on/off by the the user) that localizes the
effect of the moved mesh vertices to smaller regions around them rather than to all the
vertices inside the affected lattice cell. In such a case the movement of a mesh vertex
is damped by a weight w, which is calculated as follows: Let rmax be the maximum
radius of influence of the radial decay function (this is a user-defined quantity). Let
mv be the input mesh vertex being moved and mV be any other mesh vertex, then a
weight w is calculated as

50 3 View-Dependent Animation from Sketches

0
1

[l.O-

fid> rmax,
ifd = 0,

V rmax I

2

ifd< rmax,
(3.11)

where d is the Euclidean distance between mv and mv'. A point mv' may get assigned
multiple weights when more than one mesh point is moved. In such a case only
the maximum of all those weights is finally retained. Hence, if a mesh point lies
outside the radial region of influence of the input mesh point, it does not move at
all. The barycentric parameterization of the mesh vertices changes when the radial
decay function is used and has to be recomputed every time, but because it is a
linear parameterization, recalculation is not costly. The layering of the deformation
engine allows the user to look at and manipulate suitably the skeletal and nonskeletal
deformation separately without causing unwanted artifacts in the mesh (as is also
observed in [91], who also match the silhouette but use curve matching in 2D to
do it). Though an adaptive hierarchical lattice, which can be subdivided finely in
areas where more control over the movement of vertices is required, will be a better
solution for the localized deformation problem than the radial decay function, we use
the decay function because it is easier to implement. The radial decay function is used
only to localize the effect of the DFFD and not for the actual deformations themselves
as the least-squares solution computed by the DFFD is much more efficient. Also,
the DFFD provides higher level control over groups of vertices due to the presence
of the lattice, while manipulating individual vertex deformations using a radial decay
function is much more cumbersome.

Alternatives to DFFD, like the work on sketching mesh deformations by Kho and
Garland [78], can be used as the deformation model in the framework. It uses curves
sketched on the mesh model to directly deform the mesh. This will also improve the
performance of the algorithm as it will give finer level control over the movement
of the mesh vertices. The view-dependent deformation algorithm, however, does not
change.

The mesh obtained after this stage is the deformed mesh model [see Fig. 3.5(e)].
This process of camera recovery, posing, and mesh deformation is repeated for each
of the character sketches, and we get a camera and a character pose pair correspond­
ing to each sketch. We refer to these cameras as key views and the associated charac­
ter poses as key poses. These are used for creating the view-dependent animation. It
is worthwhile to note here that computer vision-guided character posing and defor­
mation require significantly less work than is required in doing the same manually.

3.6 Animating the Character

After we recover the view-dependent model for every sketch provided by the ani­
mator, we construct the view space. We illustrate the technique with the help of an
example.

3.6 Animating the Character 51

Fig. 3.12. Hugo sketched from six directions, namely front, back, top, bottom, left, and right.
The second row shows the corresponding animation key frames generated by the system.
Notice the marked perspective foreshortening in the top and bottom view sketches and how
the effect is correctly reproduced by the recovered camera. In the last sketch Hugo's right
leg undergoes a marked mesh deformation, which cannot just be obtained by skeletal pose
recovery. This is as per the corresponding sketched view.

3.6.1 Constructing the view space

An animator provided the set of sketches shown in the top row of Fig. 3.12. the
framework recovered the poses along with their corresponding cameras, as shown in
the bottom row of Fig. 3.12. In this example the ability of the framework to recover
and use the full projective camera is seen clearly in the top and bottom views where
the projective foreshortening effect is very pronounced. The 3 x 4 projective camera
matrix, P, is decomposable as K[R|t], where K is a 3 x 3 matrix containing the focal
length of the camera, R is a 3 x 3 submatrix controlling the view direction, and t is a
3 x 1 submatrix governing the viewpoint distance (see Section A.l). Hence, we can
recover all this information from the camera matrix. We recover the view direction v
as

v = det(M)m3 , (3.12)

where M is the first 3 x 3 submatrix of P and m3 is the third row of M. det(M) is
the determinant of M. The camera center C can be estimated as the right null space
of P by solving PC = 0. The look-at point, 1, is given by

\ = C + Av. (3.13)

We normalize these view directions to get the key view directions, v9 for the view
space. For this example, all the look-at points coincide; hence the view space is
reduced to a sphere (see Section 2.2). In Fig. 3.13, the large sphere is the view space,
the smaller red spheres represent the camera centers, and the red lines represent the
view directions.

3.6.2 Generating the animation

To generate the animation we need to compute the novel views for all points p on the
camera trajectory P(v, t). We first find the r-closest key viewpoints by using a radial
distance based selection, i.e., a key viewpoint v lies in the r-closest set of a point p if

52 3 View-Dependent Animation from Sketches

Fig. 3.13. The view space — the smaller blue and red spheres are the key viewpoints (see
colour insert).

d(v, v) < (thresh- Here, d(v, v) is the distance between v and v measured on the enve­
lope. The distance measurement is dependent on the coordinate system in which the
view space is defined. It can be made independent of scale if the coordinate system
is normalized. dthresh is the distance threshold decided by the animator depending
on the density and position of the views available and the intended animation. For
dense views and if dthresh is small, the distance on the envelope can be approximated
by a chordal distance. Once the r-closest set, i.e., the z>'s, have been determined, we
compute the blending weights as follows:

where v are the selected r-closest key viewpoints and a > 1.0. Suitable values of a
generally vary from 2 to 4, again depending on the density and position of key views.
The blending weights are normalized such that X ^ = 1. For numerical stability,
when any d(v, v) < e, the corresponding w-v is clamped to 1 and all others are set to
0. Here e is a very small number like 1 x 10"6. This ensures that the pose matches the
key pose exactly when the current viewpoint is at a key viewpoint. It also assumes
that the key viewpoints are more than e distance apart so that there is no ambiguity
in selecting a key viewpoint due to the clamping. This is a valid assumption because
6 is very small. The resulting blended pose at p is calculated using Equation (2.1).

3.6 Animating the Character 53

Figure 3.13 shows such a blending using the radial blending function. The blue
spheres are the selected r-closest key views (the £>'s) for the given current viewpoint
(shown as the green sphere). The current pose is a blend of the corresponding se­
lected key poses. Note that the weighting function used here is an instance of the
more general framework. Other functions can also be used to select the r-closest
poses and for calculating the blending weights. It is possible to give the animator a
choice between various weighting and blending functions. The value of a is also user
controlled.

A smooth camera path guarantees a smooth animation because the blending func­
tion used to compute the pose at any point on the path ensures that the in-between
poses are a smooth blend between the selected key poses. The blending function is
continuous over its domain. We also assume that the pose specified by the animator
for any key viewpoint is similar to the pose specified for any other key viewpoint in
its small neighbourhood. Thus, the animation does not have any sudden unintended
changes in the view or pose between successive frames.

Dense or uniform sampling of views in the view space is not a requirement of the
method. The animator is free to populate the view space as she wishes, in order to
get the desired animation. A pose can be added to an existing view space. We have
an example of such an augmentation in Section 2.3, where we add two new poses
to the view space created for the Hugo's High Jump animation to get an animation
changing with changes in distance of the viewpoint.

3.6.3 Blending view-dependent animation with non-view-dependent animation

Let us examine what we mean by non-view-dependent animation. Any animation
where the character's action is not explicitly dependent on the camera movement
is non-view-dependent. Such animations may even have stationary cameras. Hence,
any animation generated using normal keyframing will fall into this category. In
order to fit into a conventional animation pipeline, the framework has to be able to
blend a view-dependent animation sequence with a non-view-dependent animation
sequence seamlessly, in terms of the camera shot.

We know the cameras for the last few frames of the first sequence. One idea is
to maintain the same camera in the second sequence if it is a static camera sequence.
If the camera in the second sequence is positioned differently, then we transition to­
ward the camera in the second sequence gradually, interpolating the camera positions
across the seam using a spline curve.

We use the Hugo's High Jump animation as an example in Chapter 2 to explain
the view space creation. In this animation, we have generated the actual jump as
a view-dependent animation (that part is generated from the poses given in Fig­
ures 2.7 and 2.16). Hugo's run-up before the jump, however, is generated using
simple keyframed animation, and it blends in seamlessly with the view-dependent
portion. Here the camera simply translates with the character during the run-up and
transitions into the view-dependent camera when Hugo starts the jump.

54 3 View-Dependent Animation from Sketches

3.7 Discussion of Other Results

We have generated various view-dependent animations using sketches as input, using
techniques we have so far discussed. Here we present the salient features of the
framework demonstrated by each of these animation results.

We have already discussed the Hugo's Antics animation sequence (the input
sketches and corresponding rendered key frames are shown in Fig. 3.12). This se­
quence is a concept demonstration. The character used in the sequence is called
Hugo. Some of the sketches have a marked perspective foreshortening effect, and
hence camera recovery warrants the use of a full projective camera recovery. Further,
in each of the sketches Hugo is posed and deformed differently. While some of these
deformations can be obtained directly by reconstructing the skeleton pose, at other
places the mesh needs to be deformed to match the sketched character more accu­
rately. The animation sequence has the camera going around Hugo, cycling through
each of the key viewpoints with brief pauses at the top and bottom key viewpoints
to highlight the correctness of the full projective camera recovery. Hugo deforms
accordingly in response to the camera. When the camera is to the right of Hugo,
his right leg undergoes a marked mesh deformation that cannot be obtained by just
skeletal pose recovery. This is as per the corresponding sketched view. Other poses
have less mesh deformations.

Fig. 3.14. Sketches and corresponding rendered key frames from the Olaf Reloaded animation.

The Olaf Reloaded clip is inspired by the opening freeze frame - camera rotate
shot from the movie Matrix [131], filmed on the character called Trinity. The char­
acter used in the animation is the Olaf, the Ogre. As the camera goes round Olaf,
he replicates the midair kick made famous by the movie. This sequence has been
generated using mannequin sketches. This demonstrates that view-dependent anima­
tion is indeed possible using such sketches and the skeletal pose reconstructed by the
system. The camera model used in this sequence is affine. We stress here that all the
changes in Olaf's pose is in response to the camera movement, and it should not be
confused with a rigid rotation of the character. This animation required six sketches
for the view-dependent sequence (see Fig. 3.14).

3.7 Discussion of Other Results 55

Fig. 3.15. Sketches and corresponding rendered keyframes from the Ballet of the Hand ani­
mation.

The longest animation clip we have generated using this technique is titled Ballet
of the Hand. The character used is a cartoon hand (and hence the four fingers). Affine
cameras are used in this animation. This clip has three view-dependent sequences.
The first has the hand trying to do a jump very characteristic of a ballet sequence.
Notice that the legs (of the character) do not stretch far enough to execute a perfect
ballet jump the first time, so the character retries the jump. The retry attempt of the
character has been generated by changing the camera angle and replaying the same
sequence again. It can be clearly seen that during the jump the legs stretch further
apart this time, and hence we clearly demonstrate deformation changing in response
to a changing camera. As a final demonstration of the elegance of the view-dependent
animation technique the character executes a pirouette (a spin move in ballet), and it
can be seen as the camera also rotates independently of the character; the character
clearly deforms while rotating, in response to the camera movement. All the three
view-dependent sequences together required less than 10 sketches as input. We give
some of the sketches and the corresponding rendered keyframes from the animation
in Fig. 3.15.

The Hugo's High Jump animation sequence we discussed in Chapter 2 is also
generated from sketches. The various sketches used for inputs are shown in Fig. 2.7,
while the recovered cameras are shown in Fig. 2.8. The generated view space with
a sample camera path is shown in Fig. 2.9. The complete animation starts with
keyframed animation sequence where Hugo runs in and prepares to jump. In this part
of the animation the camera merely translates with the character. As Hugo begins his
jump, the camera begins to go around him and the sequence seamlessly blends into a
view-dependent animation sequence. As Hugo completes his high jump and falls, the
sequence again blends back into a keyframed sequence. We also demonstrate a vari­
ation of this animation by tracing a different path on the view space. On this path the
distance of the viewpoint from the character changes, and the animation responds to
these changes as explained in Section 2.3. This also illustrates that there exist other
paths on the view space (other than the path planned prior to the creation of the view
space) that are capable of generating interesting animations.

56 3 View-Dependent Animation from Sketches

3.8 Chapter Summary

In this chapter, we have presented a complete pipeline to create a view-dependent an­
imation from sketches. A review of the prior work shows that sketch-based modeling
has been a popular technique for creating animations. However, there have been rel­
atively few attempts toward posing characters from sketches. These techniques use
simple camera projection models like orthographic cameras and rely on the user to
disambiguate between possible 3D character poses. Research has also been done to
deform a partly posed character mesh so that it exactly matches a sketched pose.

The pipeline to create a view space from sketches takes as input a set of sketches
and a base 3D mesh model of the character. We use robust computer vision algo­
rithms to recover the camera that best aligns the 3D character to the view direction
in the sketch. Then we determine the pose of the 3D character that best matches the
sketched character pose when seen through the recovered camera.

We present two novel view-dependent algorithms to ascertain the pose of the 3D
character. The view-dependent posing algorithm poses the character by moving the
skeleton embedded inside the character (using IK) such that the pose matches the
sketched pose when viewed through the recovered camera. The view-dependent de­
formation algorithm moves the vertices of the 3D mesh (using DFFD) in order to en­
sure that the silhouette curves of the 3D mesh project onto the corresponding curves
of the sketch when projected using the recovered camera. In this way we are able to
embed a multilayered deformation system (IK and DFFD) into a view-dependent set­
ting by using them in conjunction with a recovered camera estimated with computer
vision techniques.

Each recovered camera and character pose pair forms a view-dependent model.
We then show how the view space is formed from these view-dependent models
recovered from the sketches. The animation is generated by tracing a path on the
envelope of the view space. We also present many example animations of varying
complexity, generated using this pipeline, to validate the claims about the effective­
ness of the techniques presented in this book.

We have chosen to use IK and DFFD and have modified and integrated them into
the framework. We, however, would like to point out that other viable alternatives
to these techniques exist in recent literature (see Sections 3.5.1 and 3.5.4). These
can be suitably adapted into forms that can replace IK and DFFD without affecting
the view-dependent posing and deformation algorithms. The implementation of the
pipeline that we present in this book should be considered as a concept demonstra­
tion.

In the next chapter we explore how we can use a combination of multimodal
inputs like video and sketches to enhance the scope of the framework and create
more interesting view-dependent animations.

4

View-Dependent Animation from Multimodal Inputs

In this chapter we present techniques for generating view-dependent animations from
multimodal inputs. We have already seen in Chapter 2 the theoretical framework used
to represent view-dependent animations. In the preceding chapter, we presented the
complete pipeline to generate moving-camera character animations from sketches.
Animators, however, use many different kinds of inputs to create an animation, such
as video and motion capture. We wish to harness the various input methods, either
separately or in combination, to generate better view-dependent animations.

First we examine and address the challenges associated with using multimodal
inputs for creating moving-camera character animations. We start from video-based
animation. Video is different from a set of sketches primarily because there is a tem­
poral component to the video. We study the use of video for creating animation in
the existing literature. We then explain how the information contained in a video
is mapped to a view space to generate a view-dependent animation. We present the
pipeline developed for this purpose. We then generalize this solution for video to in­
corporate other forms of input. We show that the framework can handle any combina­
tion of the various input methods and it offers considerable freedom to the animator
in creating moving-camera character animations.

4.1 Challenges in Multimodal Authoring of Animation

Authoring moving-camera character animations from multimodal inputs is a chal­
lenging task. The main problems we face while working with multimodal inputs are:

1. The primary components of a view-dependent animation are the key cameras and
the key character poses associated with them. In order to create view-dependent
animations, we must be able to extract information about these components from
the various types of inputs we want to handle.
Different types of inputs like sketches, video, and motion capture have differ­
ent characteristics and, hence, require different techniques for extracting these
components. A sketch is a single snapshot of the character's pose from some

58 4 View-Dependent Animation from Multimodal Inputs

camera, and in Chapter 3 we presented the techniques to infer this informa­
tion from sketches. A video is a sequence of snapshots taken over a period of
time. Since the camera and the character pose may change continuously through­
out the video, these have to be tracked across time. Both camera and character
tracking are very challenging problems. Motion capture is yet another type of in­
put, which makes use of multiple, static, calibrated cameras. The character data
output from motion capture systems is usually in the form of time-varying joint
state vectors. As a first step, therefore, we have to develop suitable techniques to
extract the required information from these inputs, to create the view-dependent
animation.

2. Next, we wish to utilize all the information, extracted from these inputs to create
the desired animation. In order to do this we need to combine the information in
some meaningful manner. The challenge here is that the camera and character
pose information extracted from various sources may have different representa­
tions. For example, information extracted from a sketch may have the camera
represented as a camera matrix and the character pose recovered as a skeleton.
In a video, however, the camera position information is obtained as a stream of
continuously tracked rotations and translations. The character in a video may be
tracked in many ways and the tracked information may include contour posi­
tions, blob positions, or 2D skeleton configurations. Similarly, motion capture
systems may have other representations for the captured motion information. It
is extremely tedious and confusing to work with numerous, different abstractions
and formats. We must be able to interpret them and map them to a common rep­
resentation. This will allow us to combine them effectively and create the desired
animation easily.

3. The number of cameras and character poses extracted from the various inputs can
turn out to be quite overwhelming, even after they are all mapped to a common
representation. Therefore, we must provide the animator with an interface to
explore them. The animator can create the view-dependent animation easily and
efficiently if provided with a tool for interactive visualization of this collection
of cameras and character poses and see the resulting animation in real time.

In subsequent sections, we present solutions to all these problems. We first ex­
amine the prior work done on creating animations from video and then present a
technique for generating view-dependent animations from video.

4.2 Prior Work

The use of video for generating animations has been extensively researched. In spite
of many years of active research, capturing motion from video remains a very chal­
lenging problem. As we have already mentioned, a video is different from a sketch
because it is a sequence of snapshots over time. Since we want to use video to create
view-dependent animations, we must be able to extract the character pose and the
camera parameters from it. Thus, we look at existing work in this area under the two
broad categories of character and camera tracking in video.

4.2 Prior Work 59

4.2.1 Character tracking in video

Character tracking is more commonly known as motion capture, because tracking
the character is equivalent to recording of the motion of the character using different
sensors. Even after substantial progress in video-based motion capture techniques,
animation from video remains a hard problem. Gleicher and Ferrier [44] describe
why the demands of animation pose a difficult challenge for video-based motion cap­
ture techniques. Animation is extremely sensitive to small jitters and wobbles which
are always present due to noisy capture and inaccurate computations. Moreover, the
importance of high frequencies in capturing subtle nuances of a motion implies that
naive filtering is not a viable tool for noise removal at video sampling rates. Also,
the unpredictability and unusual motions that need to be captured limit the strength
of the models that can be applied.

In subsequent sections, we examine the various techniques that are used to track
human and other characters in video for generating animation.

Tracking human characters in video

Animating humans from video performances is one of the primary objectives of
video-based motion capture systems. These systems use computer vision techniques
to analyze the video data and interpret the motion of the character from it. Moeslund
and Granum [102] present a comprehensive study of computer vision-based human
motion capture literature from the past two decades. A general computer vision-
based motion capture system can be functionally structured into four stages. Before a
system is ready to process data, it needs to be initialized', i.e., an appropriate model of
the subject has to be established. Next, the motion of the subject is tracked. Tracking
includes segmenting the subject from the background and finding correspondences
between segments in consecutive frames. The pose of the subject's body often needs
to be estimated. Many times this itself may be the output of the system, for example,
to control an avatar (the graphical representation of a character) in a virtual environ­
ment the body pose information is required. High-level knowledge, like a kinematic
model, is typically used in pose estimation. Depending on the requirements of the
animation, the pose information may be further processed in order to recognize the
actions performed by the subject.

Model initialization has two aspects: to find the initial pose of a subject and to
define the model representing the subject. In some systems this problem is reduced
either by assuming the subject's initial pose to be known as a special start pose [27]
or by having the operator of the system specify it [141]. Perales and Torres [106]
specify it for every frame, while Zheng and Suezaki [144] manually fit the pose at
some key frames and then use correlation to interpolate between frames.

The primary purpose of tracking is to extract specific image information, either
low level, such as edges [61], or high level, such as hands and head [139] positions
of the subject. Independent of the context, three common aspects of tracking can
be identified. First, the tracking algorithm needs to separate the moving character
from the rest of the image, i.e., the figure-ground problem. When the background

60 4 View-Dependent Animation from Multimodal Inputs

and the camera are relatively static, temporal data like background subtraction [5]
or flow [20, 141] can be used for this purpose. Spatial-data-based techniques use
thresholding [69] or statistical approaches like deformable templates [16] or hidden
Markov models [110]. Second, these segmented images are transformed into another
representation to reduce the amount of information or to suit a particular algorithm.
The third aspect defines how the subject should be tracked from frame to frame. The
correspondence analysis is often supported by prediction. A model of velocity and
acceleration or more advanced models of movements such as walking [111] may be
used. A commonly used method for prediction is the Kalman filter [73], suitable for
unimodal distributions. The CONDENSATION algorithm [68] is capable of tracking
multiple hypotheses, i.e., support multimodal distributions, and has been shown to
be a powerful alternative to the Kalman filter. A prediction-correction framework
may sometimes fail for complex cases. Zheng and Takagi [145] provide a graphical
interface to manually correct predicted model tracks.

Fig. 4.1. Tracking results on Muybrige's Woman Walking | 1()3|. The reconstructed pose is
projected on the input frames (images courtesy Bregler and Malik |23|).

Pose estimation is the process of identifying how the character's body and/or in­
dividual limbs are configured in a given scene (see Fig. 4.1). Often, explicit kinematic
and dynamic models of an articulated body are used for this purpose. The concrete
representation of the character's model is a state space where each axis represents a
degree of freedom of a joint in the model. A pose of the subject may be expressed as
a point in the state space as opposed to many points in the 2D image space. The idea
is to predict the pose of the model corresponding to the next image. The predicted
model is then synthesized to a certain abstraction level for comparison with the im­
age data. Constraints are introduced to prune the state space, either by partitioning
the state space into legal and illegal regions, as in [101] or by defining them as forces
acting on an unconstrained state space, as in [140]. Another approach to reduce the
number of possible model poses is to assume a known motion pattern, especially
cyclic motion, such as walking and running [111]. The various abstraction levels
used for comparing image data and synthesized data are edges [60], silhouettes [75],
contours [71,72], sticks [87], joints [50], blobs [140], depth [108], texture [117], and

4.2 Prior Work 61

motion [23]. The recognition aspect of motion capture can be seen as post processing
and is not particularly relevant to the problem at hand.

Kakadiaris and Metaxas [72] present a system for animating customized virtual
humans using motion parameters estimated from multiview image sequences. First, a
subject is asked to perform a set of motions to acquire the anthropometric dimensions
of his/her arms. The system is initialized manually by matching the initial configu­
ration of the model to the starting frame, and then a Kalman filter is used to predict
the state of the model in subsequent frames. Based on the predicted position of the
model, the system synthesizes the appearance of the model as it would have been
seen by the different cameras. For every model the projection of the vertices of the
model to the image plane of each camera is computed, and a new state for the model
is estimated that minimizes these discrepancies. Collomosse et al. [30] generate a
camera-motion-compensated version of the sequence, thereby ensuring that camera
motion does not influence the observed trajectories. They track features over the
sequence and analyze the occlusion of features during tracking to determine their
relative depth ordering.

Tracking other characters in video

Animation deals with a wide spectrum of characters (see Chapter 1). Techniques for
tracking based on assumptions specific to human motion or the human body may not
work for other than human characters. Efforts have also been made to capture the
expressive movement styles usually found in traditional animation (see Fig. 4.2).

Fig. 4.2. Motion of a jumping character retargeted to a 3D model (images courtesy Bre-
gleretal. [22]).

Bregler et al. [22] describe a method to capture the motion from a cartoon ani­
mation. They parameterize the motion with a combination of affine transformations
and key weight vectors. The affine transformations encode the global translation, ro­
tation, scaling, and shear factors. Key shape deformations, which are defined relative
to a set of key shapes, are used to capture finer deformations. Shapes between the key
shapes are approximated by a multiway linear interpolation. The cartoon shape is ob­
tained from video by contour tracking. The user defines for each input key shape a

62 4 View-Dependent Animation from Multimodal Inputs

corresponding output key shape in 2D or 3D. Then the estimated motion parameters
can be mapped from the 2D source to the 2D or 3D target. This strategy of designing
input-output key shape pairs circumvents many problems that arise in standard skele­
ton based motion adaption. This work attempts to bridge the gap between techniques
that target the traditional expressive animation world and the motion capture based
animation world. Motion capture data is appropriate for domains that require real­
ism, whereas, traditional animation data is better suited for areas that call for more
expressive and stylistic motion. This paper shows that traditional animation footage
can be treated like motion capture data.

Fig. 4.3. The top row shows the input frames with the tracked roto curves. The bottom row
shows an animation that follows the curves. An artist draws all strokes in the first frame; the
later frames are generated automatically (image courtesy Agarwala et al. [3]).

Agarwala [2] presents a rotoscoping system that also uses contour tracking to
generate animations from video (see Fig. 4.3). The user sketches contours directly
onto the first frame of video. These sketches initialize a set of spline-based active
contours that are relaxed to best fit the image. The system then uses motion estima­
tion techniques to track these contours through the image sequence. The contours
are then used directly as primitives for the animation. This work is further improved
upon by Agarwala et al. [3] where they describe a contour tracking algorithm cast as
a space-time optimization problem to do rotoscoping. The user specifies the positions
of the roto curves in the starting and the ending key frames. Then the system deter­
mines the positions and shapes of these curves in the intermediate frames by solving
a space-time optimization problem. The objective function is a linear combination of
five weighted energy terms depending on the change in length of the vector between
adjacent samples on the curve, change in curvature, rate of motion, flow along nor­
mals to the curve points, and image gradient at points along the curve. The user may
edit the resulting sequence to correct the errors produced by the optimization. These
are then used to create 2D cartoon-style animations from video.

4.2 Prior Work 63

In another contemporary work by Wang et al. [132], video input is semiautomat-
ically rotoscoped into semantically meaningful regions using a mean shift-guided
interpolation algorithm. These are then used to generate 2D cartoon animations.

Video-based rendering of character animation

In contrast to the above works, video-based techniques such as video interpola­
tion [21, 34] and video sprites [116] provide an image-based representation of dy­
namic scenes allowing synthesis of novel image sequences with visual quality com­
parable to the captured video. Starck et al. [120] present a system for video-based
representation for free viewpoint visualization and motion control of 3D character
models created from multiple-view video sequences of real people. They represent
character motions as free viewpoint video reconstructed from multiple-view video
sequences captured in a studio with 10 cameras. The motion sequences are blended
to provide seamless motion cycles and smooth transitions between different motions.
The blended video sequences are constructed as an offline process, and a motion
graph is used to represent them and to create a 3D character animation.

4.2.2 Camera tracking in video

Matchmoving or camera matchmoving refers to the process of matching the position
and angle of computer generated synthetic objects (such as an animated character) to
real footage shot with a film or video camera. Graphical objects should be inserted
such that they appear to move as if they were a part of the real scene. Seamless, con­
vincing insertion of graphical objects calls for accurate 3D camera motion tracking,
stable enough over extended sequences so as to avoid the problems of jitter and drift
in the location and appearance of objects with respect to the real scene. Matchmov­
ing finds several important applications in animation, augmented reality as well as
in the creation of special effects [135]. In order to provide the versatility required by
such applications, very demanding camera tracking requirements, in terms of both
accuracy and speed, are imposed [11].

Camera tracking algorithms are well documented in recent computer vision lit­
erature [41, 118]. They generally involve the following steps:

1. Compute feature points in each video frame (feature detection).
2. Match the feature points between neighbouring frames (correspondence).
3. Compute a projective reconstruction from the interest point matches (compute

feature tracks).
4. Compute a metric reconstruction (autocalibration of the camera).

Camera tracking methods often need to work in unprepared, unstructured scenes,
large-scale environments, or archive footage. Methods that avoid making any as­
sumptions regarding the environment exploit geometric constraints that arise from
the automatic extraction and matching of appropriate 2D image features such as cor­
ner points. Corners are simply points of localized image structure, formed at the

64 4 View-Dependent Animation from Multimodal Inputs

boundaries of image regions of different brightness. Depending on their mode of
operation, proposed approaches can be classified into two categories.

The first category consists of methods designed for offline use on prerecorded
image sequences [32, 40]. Such methods process image data in a batch mode and
usually are noncausal, employing both past and future frames for deducing the cam­
era motion corresponding to the current frame. Albeit accurate, batch techniques are
computationally demanding due to the use of global bundle adjustment, which in­
volves the solution of large, nonlinear optimization problems [128]. This, plus the
requirement of operating on the whole sequence at once, makes batch methods inap­
propriate for use in time-critical applications.

Methods operating in a continuous mode, in which images are processed incre­
mentally as acquired, constitute the second class of camera tracking techniques [10,
14, 118]. Typically, such methods are causal, relying only on past frames for esti­
mating the camera motion for the current one.

A lot of work has been done in the areas of tracking characters and cameras
from video. These two areas are, however, always treated separately. There is no
single method that combines both. To generate a view-dependent animation, both
the camera and the character need to be tracked. We use existing methods to track
the camera (see Section 4.3.1) and the character (see Section 4.3.2), and then use the
tracked cameras and character poses to generate the view space. This allows us to
combine the camera and the character information extracted from the video into one
representation. We have primarily focused on monocular or single camera video and,
hence, do not require any special setup to work with.

Our tracking framework is initialized in the first frame by drawing the spline
contours on the image. We also associate a 2D stick skeleton with the contour curves
in the first frame (see Section 4.3.2). We use a Kalman-filter-based active contour
framework, inspired by [16]. We find that it is suitable for tracking both animated
characters and real people; so it can handle a variety of uses. In case the tracker
fails for certain hard-to-track videos, e.g., for videos with prolonged self-occlusion
of body parts, we provide interactive adjustments and restart the tracker. The system
(see Section 4.3.2) based on [16] has many of the good features of the space-time
optimization based system of Agarwala et al. [3]. The contour shape tracked can
be biased toward an average deformable shape template to track rigid motions. The
tracker can also be made almost independent of the average shape to track nonrigid
motions and can even track agile motions in the presence of background clutter. It
works at real time frame rates for tracking, which a system based on space-time
optimization cannot do.

In the framework, for every video frame on which the contour is tracked,
the 2D stick skeleton also gets tracked along with the contours. We then use the
view-dependent posing algorithm (see Section 3.5.2) to pose the 3D skeleton of the
character from the tracked 2D skeleton. We have used a video clip, with signifi­
cant character and camera movement, as input to the pipeline for creating a view-
dependent animation from video (see Section 4.3). Moreover, the framework also
has the ability to incorporate stylizations from multimodal inputs such as sketches
and videos.

4.3 Creating a View Space from Video 65

In the next section, we present our pipeline to create the view space from video.
We then argue that the pipeline can be easily extended to other forms of input. We
show that if such a pipeline can be created, the information required to create the
view-dependent animation can be extracted. We also show that the view space is an
apt representation for this information.

4.3 Creating a View Space from Video

A video differs from a set of sketches since there exists a strong temporal correlation
between the frames of the video. In order to take advantage of this fact, a separate set
of processing techniques is required. However, we maintain the higher level structure
of the animation pipeline developed for dealing with sketches so that the animator
finds it intuitive and easy to use (see Section 3.2).

L

i / , / Vide

/

' Video /

:r.........
Character Tracking

^
o /

/ Camera Tracking

Camera Recovery

(semiautomatic)

/ Base Mesh /

Model /

\
Character

Pose Recovery
(semiautomatic)

4
i

J

^/
L

1 View Space /

t
View-Dependent / J

Models / i

Fig. 4.4. Schematic diagram depicting the pipeline to create a view space from a video.

The input here is a video sequence of a character performing some action. In
addition we require the base mesh of the character, which is to be used in the new
animation. We also require the skeleton and the lattice as mentioned for sketches (see
Section 3.3). We illustrate our method by using an example video sequence, which
has significant camera movement during the character's action. We use this video as
input to generate our view space and consequently a view-dependent animation. In
order to recover the camera and the respective character poses, we track the camera
and the character across the video. These are required to construct the view space
from the video (see Fig. 4.4).

4.3.1 Camera tracking

The first stage in the pipeline shown in Fig. 4.4 is the recovery of the camera. In a
video, however, the camera moves on a continuous path, except across shot changes.

66 4 View-Dependent Animation from Multimodal Inputs

Hence, we need to recover the camera position for every frame of the video. The
solution is to track the camera across the video. For this purpose, we have used
Boujou [18], a matchmoving software, which robustly implements the camera track­
ing algorithm. It processes video data in batch mode and is very accurate (see Sec­
tion 4.2.2). The output of the camera tracking phase is the camera view direction and
viewpoint position for every frame of the video. When the character mesh is viewed
using these recovered cameras, it appears aligned to the view in the corresponding
video frame.

In order to track the camera, we need to track the feature points on the background
(i.e., the static part of the video). For this purpose, we mask out the moving character
in all the frames of the sequence using an approximate polygonal mask. The masking
out of the character has to be done manually only on the first frame, the last frame,
and a couple of other key frames where the pose of the character differs significantly
from neighbouring frames. The mask is then tracked and interpolated by Boujou for
the whole video. We then track the camera from a dense set of background feature
points (see Fig. 4.5(a)). Boujou performs camera tracking and returns the full projec­
tive camera matrix for each frame of the sequence. Figure 4.5(b) shows the camera
path recovered (in red). We later use these tracked cameras to form our view space.
The major advantage of the framework is that we can represent all the information re­
turned in the full projective camera in terms of the viewing direction and the distance
of the viewpoint from the character in the view space. Now we need to associate the
character's pose with the cameras we recover.

(a) (b)

Fig. 4.5. (a) feature points tracked by Boujou, (b) camera tracking by Boujou. The camera
path recovered is shown in red (see colour insert).

4.3 Creating a View Space from Video 67

4.3.2 Character posing

After the cameras for each video frame have been recovered, we move on to the
next stage in the pipeline (see Fig. 4.4), which is recovery of the character pose.
As the character moves, the character pose also changes across the frames of the
video. Hence, we have to also track the character across the video. We want a tracker
that works reasonably well for rigid as well as agile motion. It should work in the
presence of background clutter and should be able to track real people and animated
characters. We draw inspiration from many of the prior works done in video-based
animation [2, 3, 22], and use a contour tracker. We have implemented a contour
tracker based on the work on Active Contours by Blake and Isard [16].

The tracker estimates a contour shape, represented by a spline curve with control
points X(t), Y(t) at any instant of time. The tracker is initialized in the first frame by
drawing the spline contours on the image. This defines an average shape template
whose control points are given by X(0, Y(f). A shape transformation from the tem­
plate to the current shape is given by Q. The transformation for the template shape
itself, Q, is the identity transformation.

The tracker then associates a Kalman filter with each contour. Kalman filters
comprise two steps: prediction and measurement assimilation. Prediction employs
a second-order object dynamics model to extrapolate past motion from one video
frame to the next. Second-order dynamics, written in discrete time, can be defined
using a state vector X as

*.-(f--0°)-
Successive video frames are indexed n = 1,2,3,...

The dynamics of the tracked object is now given by the following difference
equation:

Xn+l=AXn + (*\ . (4.2)

Here, A is a matrix representing the deterministic part of the dynamics, while at
each n, w„ is an independent, normally distributed vector of random variables. The
covariance of wn specifies the random part of the dynamics model. The assimilation
stage blends measurements from a given frame with the latest available prediction of
the current state, Xn, using the following equation:

Xn+x=AXn + K^xV (4.3)

where Xn+\ is the next predicted state, K is the Kalman gain matrix, and Z is the state-
space measurement vector. The actual measurements on the image are in the form of
feature points detected by the tracker along the contour normals. Since the tracker
uses only intensity information to compute features, it works on gray-scale images.
The contour shape tracked can be biased toward the average shape template to track
rigid motions. It can also be made almost independent of the average shape to track

68 4 View-Dependent Animation from Multimodal Inputs

nonrigid motions and can even track agile motions in the presence of background
clutter.

(a) (b) (c) (d)

Fig. 4.6. Posing the character from a video frame: (a) contours tracked on a frame of the
input video with joints of the 2D skeleton marked in white, (b) corresponding joints on the 3D
skeleton marked in white, (c) 3D skeleton and character's mesh after posing, (d) final rendered
pose of the character (see colour insert).

The example we show here is for an animated character, but a Kalman contour
tracker is known to work for tracking real people as well. In case of prolonged self-
occlusion of a body part — a situation no tracker can handle — we provide inter­
active adjustments and restart the tracker. Though a CONDENSATION tracker may
behave better for kinematic singularities [39], we have used the Kalman contour
tracker for its relative ease of implementation. We have found it sufficient for the
purpose of demonstrating the concepts of this book.

We associate multiple contours with the character: one contour for every segment
of the body, for example, arms, legs, hands, and feet. From the tracked contours we
recover a 2D skeleton, whose segments represent the position of each body part.
This is done by associating a 2D skeleton with the contour curves in the first frame
of the sequence. We define the position of joints of the 2D skeleton relative to the
points on the contour. Since this association holds across all the frames on which the
contour is tracked, the 2D skeleton also gets tracked along with the contours. Thus,
if the contour tracked is correct, then the 2D skeleton tracked is also correct. Fig­
ure 4.6(a) shows the tracked contours on one of the frames along with the associated
2D skeleton.

We pose a 3D character mesh using the tracked camera and the tracked 2D skele­
ton. In order to construct the view space, a set of cameras and corresponding char­
acter poses are required. The 2D skeleton is a good approximation of the charac­
ter pose for an individual frame. However, a continuous sequence of these tracked
2D skeletons may have oscillations. In order to avoid this problem, the animator
chooses a sparse set of appropriate frames from the video sequence. While selecting
the frames, the animator also keeps in mind that these frames should be able to re­
produce the motion from the video to a desired degree of accuracy. Posing is done
only for these frames. In this example, the animator has identified 15 key frames for
posing. Before the posing is carried out, the scaling of the camera coordinate system

4.3 Creating a View Space from Video 69

has to be matched with the scaling of the character coordinate system. This can be
done if the estimate of a true dimension is known in the camera coordinate system.
This allows us to set up an isotropic scaling matrix to be applied to the character
before the posing process. The 3D character mesh has a skeleton embedded inside it
[see Fig. 4.6(b)]. When this skeleton is moved, it moves the mesh along with it using
blended vertex weights. The correspondence between the 2D skeleton and the 3D
skeleton is specified only once during the whole process [Figures 4.6(a) and 4.6(b)
show the joint correspondences marked in white]. The pose computed is such that
the 3D skeleton projects onto the 2D skeleton for the corresponding camera. This is
done using the view-dependent posing algorithm, given in Section 3.5.2. The result­
ing pose minimizes the error between the 2D skeleton and the projected 3D skeleton
while maintaining kinematic constraints on the 3D skeleton. Figure 4.6(c) shows the
posing of the 3D skeleton and the character mesh. The final rendered pose is shown
in Fig. 4.6(d). The animator also has the choice of refining the poses manually, if so
desired.

We track the contours on the image to obtain the 2D skeletons, but the contours
themselves can be used to transfer mesh deformations by matching them to the sil­
houette curves of the mesh using the view-dependent mesh deformation algorithm
(see Section 3.5.4). Semiautomatic techniques to do this have been demonstrated
by [91] (see Section 3.1.2). Since in this example the character in the video and in
3D are not the same, manual intervention would be required on part of the animator
in case such deformations are to be transferred meaningfully.

Figure 4.7 shows the posed character for two sample key frames. After we have
posed the character for all the key frames chosen by the animator, we are ready to
construct the view space.

4.3.3 Constructing the view space

We have the full 3 x 4 projective camera matrix, P, for every camera used for pos­
ing. Hence, as explained earlier in Section 3.6.1, we recover the view direction using
Equation (3.12), and the look-at point using Equation (3.13). We normalize these
view directions to get the key view directions, v. In Fig. 4.8, the red spheres repre­
sent the camera centers and the red lines show the respective view directions. The
character in Fig. 4.8 is currently in its base pose. Note that all the view vectors do
not intersect at a common point even though their general direction is toward the
character. Hence, they do not lie on one sphere centered at a common look-at point,
but in a general view space. Such a configuration of cameras cannot be handled by
techniques like those in [109].

Since the animator has chosen 15 key frames from the video for posing, we use
the corresponding z/'s from those frames to construct the view space. If we consider
a camera path P(v, f) through these v, then at a time instant t_ : v = v, the instanta­
neous view space is a unit sphere centered at the look-at end of the normalized view
direction vector. This is because a unit sphere models the view space made of all
the possible unit view direction vectors toward a particular point. The complete view
space is the union of spheres centered at each of the look-at points (see Section 2.2).

70 4 View-Dependent Animation from Multimodal Inputs

(a)

(b)

Fig. 4.7. (a) tracked contours and associated 2D skeletons on two key frames, (b) correspond­
ing posed character viewed through their respective recovered cameras (see colour insert).

Figure 4.8 shows the view space generated (in green) for this example. Associated
with every view direction, v, is the corresponding character pose, mv. We incorporate
the distance, dv, associated with the corresponding view directions, v, by using the
length of the vector C- l [see Equation (3.13)]. Note that this view space construction
is similar to the one explained in Section 2.2 for the Hugo's High Jump animation
sequence. Hence, we see that the view space generated from sketch- and video-based
inputs are constructed using similar pipelines. This makes the use of the framework
extremely easy for the animator.

4.4 Creating the View Space from Multimodal Inputs 71

Fig. 4.8. The viewpoints, the view directions and the view space (see colour insert).

4.4 Creating the View Space from Multimodal Inputs

We can now map the information present in a set of sketches and a video to a view
space. Even for other input methods, like motion capture, the basic blocks of the
pipeline to create a view space will remain the same, i.e., the camera recovery stage
followed by the character pose recovery stage. The view space can thus form a com­
mon representation for all these forms of input. It can be very easily used to fuse
together these inputs. Thus we have solved the first two problems offered by the task
of multimodal authoring. We have shown how to extract and meaningfully represent
the information contained in multiple types of input.

The animator may choose to select some camera shots from a video, a few rel­
evant poses from sketches, and motion data from motion capture and map them to
the same view space. If synchronized video streams can capture a performance from
multiple directions (as is done in a motion capture stage), then all these videos taken
together can form a view space as they document the character poses from different
directions over a period of time. This maps nicely into the framework and can be
used to animate a new character easily. The animator can add more poses to vary the
movement from the recorded performance, if so required.

In order to do all of the above, we must be able to recreate the camera and char­
acter motions from all our input streams. We must also be able to use a combination
of various inputs as desired by the animator. In the next section we present a method

72 4 View-Dependent Animation from Multimodal Inputs

to generate a view-dependent animation from the view space we create using our
pipeline.

4.5 Generating the Animation from Video

In a video we have only one view direction at a given time instant, hence, all the
camera shots recovered from the video maps to one particular path traced on the
envelope of the view space. This path is the smooth path passing through all the
recovered camera positions. In order to recreate the camera and the character motion
from video, we move the camera along this path.

We need to compute the novel views for all points, p, on the camera trajectory,
P(v, d, f), to generate the animation. We summarize the process for generating the
animation in Algorithm 4.1.

Require: The view space must be created before this algorithm can be run.
Require: The camera path P(v, d, t) must be given.

I begin
2 foreach point p on P(v, d, f) do
3 Find the r-closest key viewpoints, v, as explained in Section 3.6.2
4 qv_ = d v
5 foreach v in the r-closest set ofv do
6 Compute the length of qv_ projected along v as d v • v.
7 Find d1^ and df such that dlJ < d v • v < d®, by a binary search in

the sorted tuple list.
8 Compute ft using Equation (2.2).
9 Compute wq. using a radial blending function similar to the one

given in Equation (3.14) with d(qL, q-v) as the distance term.
10 Ensure that Yiv wq-v = 1-
n Compute the blended character pose for qv_ using Equations 2.3

and 2.4.
12 end
13 end
14 end

Algorithm 4.1: Algorithm to generate a view-dependent animation from a view space.

Figure 4.9 shows blending using the radial blending function. Figures 4.9(a) and
4.9(b) show the character poses for two of the key views. The green sphere in the
figures is the current viewpoint and the green line is the current view direction. The
blue spheres are the r-closest key views for the current view position. When the green
sphere is at a key view the pose matches exactly with the character pose associated
with that key view even though other key views may be in the r-closest set. This is

4.5 Generating the Animation from Video 73

because the weight associated with that key view becomes 1 and 0 for the others.
Figure 4.9(c) shows that when the current view (green sphere) lies between two (i.e.,
r = 2) key views (blue spheres), the character pose is a blend of the two poses.

For every point on the camera path, the algorithm requires a single pass through
all the meshes that have to be blended (in the last step of the inner loop) and is,
therefore, 0(n), where n is the total number of vertices of the meshes (i.e., it is
linear in the number of vertices). The computations involved are quite simple, and the
animation is generated in real time, as the user specifies a camera path, at frame rates
varying from 30 to 60 frames per second (fps) depending on the density of views in
the view space. The machine used is a Pentium 4 at 1.2 GHz with a GeForce 2 MX
graphics card.

The algorithm generates the same camera and character motion captured from
the video on a new character. We also have another example to demonstrate the gen­
eration of view-dependent animation from video, in which we use a short clip from
DreamWorks Animation SKG's Shrek [1] to generate a view-dependent animation.
In the input sequence, Shrek is flexing his muscles in the arena after having beaten-
up the Lord Farquaad's guards, as the camera pans across the arena. This sequence
was selected because it also has significant camera motion during the character's ac­
tion. We cannot reproduce the original input due to copyright restrictions, but the
generated view-dependent animation can be seen.

The extent of similarity of the movement in the new animation to the original
movement in the video is a direct consequence of the number of sampled key views
used to create the view space (15 in this example). A denser sampling will recreate
the motion more faithfully than a sparse sampling but requires more work. Decision
of the threshold for the sampling-density-versus-animation-quality trade-off is left
to the animator. The algorithm, however, works well with a relatively sparse set of
key views and associated poses also. The movement style of the generated animation
can be altered during the posing phase in order to create a stylized variation of the
movement recovered from the video. Another point to consider is that all the char­
acteristics of the original video cannot be directly mapped to any new character. In
the example where we have used the clip from Shrek, the original video has a lot of
fine-level facial animation and some secondary cloth animation. This cannot be re­
produced on the new character because we do not have requisite animation controls
for extensive facial and cloth animation on the new character. The posing algorithm
we use essentially reconstructs the poses at the sampled key frames. It does not ex­
plicitly make use of the temporal continuity information present between the key
frames. This can be incorporated in the posing process by tying up the posing algo­
rithm to the character tracking algorithm in an error-correcting feedback loop. This
will further enhance the performance of the posing algorithm.

Note that in this particular example, associated with every key view direction, v,
there exists exactly one character pose, mv, at a particular distance, dv. Hence, the
tuple list associated with every v has length 1, and the blending of poses on the basis
of distance along a view direction is not required. However, we illustrate blending of
poses based on distance in another example explained in Section 4.6.

74 4 View-Dependent Animation from Multimodal Inputs

(a) (b) (c)

Fig. 4.9. Character poses associated with key views and novel view generation (see colour
insert).

Figure 4.10 shows the camera path traced by qv_ as a trail in green, at the correct
distances as recovered from the camera tracking. This path exactly matches the path
recovered by Boujou. It does not lie entirely on the envelope but partly inside it as it
is drawn using the distance of the viewpoint. The path P(v, d_, t) has a corresponding
projection of this trail on the envelope of the view space.

Fig. 4.10. The top row shows the camera path. The bottom row shows the corresponding
generated animation frames (see colour insert).

Hence, we can generate view-dependent animations from video. We see, how­
ever, that the information content from one video maps to a single path on the view
space. We show in the next section that it is possible to generate an animation by

4.6 Generating the Animation from Multimodal Inputs 75

tracing other paths on the envelope when multiple view directions with their corre­
sponding poses are defined for a character at a given instant in time. These multiple
view directions may be obtained, for example, from multiple synchronized video
sources or from augmentation of the view space with sketches.

4.6 Generating the Animation from Multimodal Inputs

We have shown how we can use a video to create a view space and generate a
view-dependent animation. We now show how the animator can integrate inputs from
sketches and video using the framework to generate a new animation. Suppose the
animator wants to replicate the camera movement of a master cinematographer from
some existing movie (video) in the new animation. She, however, wants to give a
unique movement style to the character and hence wants to pose the character inde­
pendently, using sketches.

The first step is to recover the camera path from the video and the character poses
from the sketches.

4.6.1 Recovering the camera path from video and the character poses from
sketches

The video we choose for constructing the example is the famous ballroom dance
sequence from Disney's Beauty and the Beast [129]. In this sequence the camera
moves in a complex downward spiral. We track the camera path, after masking out
the moving characters, as explained earlier in Section 4.3.1. Figure 4.11 shows the
recovered camera path. Note that we cannot show the actual frame of the video on
which camera tracking was done because of copyright issues, but the camera path
and feature points shown in Fig. 4.11 are what were actually obtained during our
experiments. We want our rendering camera to move along such a camera path in
our animation.

The character poses required in the animation are sketched by the animator. We
recover the camera corresponding to each sketch and recover the associated character
pose, as explained in Sections 3.4 and 3.5 (see Fig. 4.12).

We want to generate the animation by moving along the path recovered from the
video. To achieve this objective, we have to transplant the camera path recovered
from the video on the view space constructed from the sketches.

4.6.2 Transplanting the camera path on the view space

The cameras recovered from the sketches form a view space. The view space and
its envelope is shown in Fig. 4.13(a) with the recovered cameras shown as the small
red and blue spheres. The small green sphere denotes current view direction, and
the blue spheres are the selected r-closest key views for the current viewpoint. The
character's animation is generated by tracing paths on this envelope.

76 4 View-Dependent Animation from Multimodal Inputs

Fig. 4.11. The recovered camera path is seen in the right bottom. The points are the feature
points on the background, tracked by Boujou in order to recover the camera path.

Fig. 4.12. The top row shows some of the sketched poses. The bottom row shows the corre­
sponding poses recovered by the framework.

We want to transplant the camera path recovered from the video sequence onto
this view space. The recovered camera path and the view space are in different

4.6 Generating the Animation from Multimodal Inputs 77

Fig. 4.13. (a) envelope of the view space constructed using the cameras recovered from the
sketches, (b) transplanted camera path (see colour insert).

coordinate systems. The transplantation can be done meaningfully only when we
are able to register the two coordinate systems. The two coordinate systems are reg­
istered when an average vector from the character to the camera position in the video
maps to a similarly oriented character-to-camera vector in view space (see Fig. 4.14).
Thus, we want the mapping from one coordinate system to the other to preserve the
average relative orientation of the camera with respect to the character. We have a
simple algorithm to transplant the camera path into the view space by correctly reg­
istering the two coordinate systems with each other (see Algorithm 4.2).

The algorithm thus places the path in the view space in such a manner that the
relation of the camera position to the character's position is visually similar to that in
the video from which the path is extracted. In this particular example, the character
moves on the ground, and since we can track feature points on the ground plane,
calculating an estimate of the point A is easy. B is also obtained easily as the average
of the recovered camera positions.

Note that the algorithm described above is to assist the animator in placing the
transplanted path. The animator can choose to place the path interactively in a differ­
ent position if it is required, in order to create the desired animation.

As the rendering camera moves along this path, the corresponding animation is
automatically generated. The transplanted path [shown as a green trail in Fig. 4.13(b))
in essence matches the path recovered from the video sequence (as shown in
Fig. 4.11). The green trail is the locus of all the qv_ at their correct distances along their
respective view directions. This demonstrates that the framework is able to handle
all the intricate camera variations in terms of view direction and viewpoint distance
embodied in the path and generate a new animation.

Thus, we can generate view-dependent animation from multimodal inputs. We
can augment a view space by adding more key viewpoints and key poses. Similarly,
we want to augment the camera path by extending the transplanted camera path.

78 4 View-Dependent Animation from Multimodal Inputs

Require: A known true dimension in the coordinate system in which the
camera was recovered relative to a dimension in the character
coordinate system

1 begin
2 Match the scaling of the coordinate system in which the camera path was

recovered to the scaling of the coordinate system of the character by
multiplying with a isotropic scaling matrix. This matrix can be
constructed from the known true dimension.

3 Let O be the origin of the coordinate frame in which the camera was
tracked.

4 Let A be the average ground position of the character in the video.
5 Let B be the average position of the recovered camera.
6 Let O' be the origin of the coordinate frame in which the view space is

constructed.
7 Let A' be the average ground position of the 3D mesh model of the

character.
8 Let B' be the average position of the transplanted camera in the coordinate

system of the view space.
9 The average character-to-camera vector is given by

to Shift the origin of this coordinate system to A.

n The average character-to-camera vector is now given by Ofl = XB. Shift
the view space such O' coincides with A'.

12 Place the camera path in the view space such that the vector giving the

average position of the camera, O'B', is the same as Ofl.
13 end

Algorithm 4.2: Algorithm to transplant the recovered camera path in the view space.

4.6.3 Augmenting the camera path

The camera path can be augmented by adding new path segments after the trans­
planted path. The animation sequences that result from the existing and added path
segments are seamlessly blended if the added path segment is continuous with the
existing path.

We augment the path transplanted in the previous section. The augmented path
is shown in Fig. 4.15 along with the generated animation frames.

In this example, the animator has created poses at varying distances along the
same view direction. The in-between poses for the animation are generated as ex­
plained in Section 4.5 using Algorithm 4.1. An example of this is shown in Fig. 4.16.
In the top row the green trail (i.e., q^) changes only in distance and not in direction
with respect to the character. The projection of qv_ on the envelope, i.e., v, represented
by the larger green sphere is stationary, indicating that the view direction is constant.
However, the corresponding character pose changes as shown in the bottom row are

4.6 Generating the Animation from Multimodal Inputs 79

(a) (b)

Fig. 4.14. (a) Relation between the average (tracked) character position on the ground plane
and the average (tracked) camera position, (b) shows the same relation between the trans­
planted path and the posed character.

Fij». 4.15. The top row shows the camera path. The bottom row shows the corresponding
izeiierated animation frames.

a result of blending caused due to change in distance. The fact that the camera has
moved farther away from the character is also apparent in the rendered animation
frames shown in the bottom row.

Thus, we have also solved the third problem in multimodal authoring of moving-
camera character animations (see Section 4.1). The animator has to trace paths on the
envelope of the view space to create the animation. Since all the various input streams

80 4 View-Dependent Animation from Multimodal Inputs

Kî . 4.16. The top row shows the camera p;ith changing only m distance. The bottom row
shows the corresponding generated animation frames (see colour insert).

can be represented as ihe view space, this serves as a common intuitive interface for
designing view-dependent animations from these inputs. A path on a complex view
space may seem difficult to interpret. All the parameters defining a path, however,
are easy to understand because they map to physical camera parameters like camera
rotation, translation, and focal length. The animator also gets instant visual feedback,
as the animation resulting from the traced out path is displayed in real lime.

4.7 Chapter Summary

In this chapter we have shown how to generate view-dependent animation from mul­
timodal inputs. We address the problems inherent to multimodal authoring of view-
dependent animations. The primary challenges are to develop techniques to extract
relevant information from different types of input, to find a common representation
for all this information, and to provide an interface to the animator that can be used
to generate the animation. We have presented solutions to each of these problems in
this chapter.

We examined the prior work done in the area of video-based animation. In or­
der to do so, we surveyed a variety of methods addressing three stages of a video-
based capture system. These are model initialization, tracking, and pose estimation.

4.7 Chapter Summary 81

Model initialization techniques range from manual initialization to complex pose
fitting based on anthropometric data. Tracking methods vary from the use of static
thresholding and hidden Markov models to the Kalman filter. Pose estimation tech­
niques use various abstraction models like blobs, contours, or textures. There is lim­
ited work done on the capture of the motion of cartoon characters from a video.

We have presented a pipeline to create a view space from video input. The rel­
evant camera and character pose information can be extracted from the video by
utilizing camera and character motion tracking techniques. The pipeline has sim­
ilar higher level structure as the pipeline we developed for sketch-based input in
Chapter 3. Pipelines to map other forms of input to a view space can be similarly
constructed. Thus, the view space serves as a common representation for all types of
inputs.

The method to generate a view-dependent animation from a view space has been
demonstrated. We first explained the procedure for generating animations from video
inputs. An algorithm is presented that generates the animation, given a camera path
on the view space. The animation is generated in real time as the animator traces a
path on the view space. This procedure is extended to multimodal inputs.

We have illustrated with an example how to integrate sketch- and video-based
inputs for creating a moving-camera character animation. The camera path is ex­
tracted from a video, and then the path is transplanted to the view space created from
sketches. We have presented an algorithm for automatic transplantation of the cam­
era path. The view space can be augmented with new key viewpoints and poses. We
have also demonstrated that it is possible to augment the camera path itself. We ex­
tend the transplanted camera path and show that the animations generated from the
two segments of the path seamlessly blend together.

5

Stylistic Reuse of View-Dependent Animations

We are now in a position to appreciate the challenges and difficulties faced in creat­
ing a moving-camera character animation. We can create view-dependent animations
from a variety of inputs using the framework (as seen in Chapters 2 to 4). Here, we
consider the different view-dependent animations created by changing the render­
ing camera, as stylistic variations of each other. We are interested in reusing these
variations to synthesize novel animations. We call this process stylistic reuse. The
view-dependent stylizations can be put to myriad uses in order to synthesize a novel
animation.

We present three broad classes of reuse methods. First, we show how to ani­
mate multiple characters from the same view space. Next, we show how to animate
multiple characters from multiple view spaces. We use this technique to animate a
crowd of characters. Finally, we draw inspiration from cubist paintings and create
their view-dependent analogues. We use different cameras to control different body
parts of the same character and then combine these parts to form a single character
in the animation.

Since this chapter of the book bridges across the two themes of stylized animation
and animation synthesis, we begin by reviewing the related work pertaining to these
two areas.

5.1 Prior Work

Stylized or nonphotorealistic animation and rendering have been used, in recent
years, to produce visually appealing imagery. Reuse of stylized animation is difficult
because often the stylizations are generated for a particular viewpoint. We present
here the prior work done in these two diverse areas.

5.1.1 Stylized animation

Several artwork styles have been explored in stylized animation and rendering liter­
ature such as pen and ink, painting, informal sketching, and charcoal drawing. Many

84 5 Stylistic Reuse of View-Dependent Animations

of these focus on a specific artistic style or a closely related family of styles. For
example, Meier [100] describes a technique for creating animations evocative of im­
pressionistic painting.

Litwinowicz [95] uses image and video analysis to generate impressionistic ef­
fects. He allows a user to select size and style of the brush stroke and automatically
processes a segment of video. Optical flow and edge detection are used to manip­
ulate a mesh of persistent brush strokes. Additionally, the user can choose to have
the brush strokes follow the contours of an image or fix them to a global angle.
Hertzmann [56] introduces a method to automatically paint still images with vari­
ous stroke sizes and shapes, and then extends the technique to video [59]. This work
addresses the problem of temporal incoherence in Litwinowicz [95] by selectively
updating the properties of brush strokes that lie in video regions that change sig­
nificantly. However, flickering and scintillation of brush strokes remains a problem.
Kowalski et al. [82] create cartoon-style renderings reminiscent of Dr. Seuss.

Hertzmann et al. [58] present a versatile technique to learn nonphotorealistic
transformations based on pairs of unpainted and painted example images. These
transformations can then be applied to new inputs. This has been extended to video
processing by Haro and Essa [51].

In the system described by Kalnins et al. [74], a user draws strokes over 3D
models, which are propagated to new frames. DeCarlo and Santella [38] present an
algorithm to stylize photographs by running inputs through known image prepro­
cessing algorithms to segment the image into regions that could be given a fixed
color. Klein et al. [79] present a tool for generating nonphotorealistic animations
from video. This method undertakes a spatio temporal analysis of video. A novel as­
pect of this work is the use of a set of rendering solids where each rendering solid is a
function defined over an interval of time. This allows for the effective and interactive
rendering of many nonphotorealistic styles.

Fig. 5.1. The input image is shown in the left top, the left bottom image shows a visualization
of the radial basis function. The output is shown in the center image. A detailed view of the
rendered strokes is shown in the right image (image courtesy Hays and Essa [53]).

5.1 Prior Work 85

Hertzmann [57] introduces a new method for adding a physical appearance to
brush strokes. The basic idea is to add height fields to brush strokes to allow for
lighting calculations. The resulting highlights and shading give the paint strokes a
more realistic appearance. Hays and Essa [53] give techniques to transform images
and videos into painterly animations depicting different artistic styles. They use ra­
dial basis functions to globally interpolate brush stroke orientation (see Fig. 5.1).
Temporal incoherency, which was in the past the chief detractor of NPR video tech­
niques, is avoided both by the addition of temporal constraints to previously re­
searched brush-stroke properties and by the addition of new brush stroke proper­
ties like opacity. Winnemoller et al. [138] present an automatic, real-time video and
image abstraction framework that abstracts imagery by modifying the contrast of vi­
sually important features, namely, luminance and color opponency. They reduce the
contrast in low-contrast regions using an approximation to anisotropic diffusion and
artificially increase contrast in higher contrast regions with difference-of-Gaussian
edges.

Glassner [43] talks about using cubist principles in animation, i.e., rendering
simultaneously from multiple points of view in an animation using an abstract cam­
era model. Stylizations based on innovative use of the camera have also been re­
searched [4, 29].

View-specific distortions also form a very elegant method for specifying stylized
animations. View-dependent animation is inherently stylized due to the variations in
the animation that occur by changing the parameters of the rendering camera. We
want to reuse these stylistic variations to synthesize new animations.

5.1.2 Synthesis and reuse of animation

Recently, there have been a number of projects that allow an animator to create new
animations based on motion capture data. Rose et al. [112] use radial basis functions
to interpolate between and extrapolate around a set of aligned and labeled example
motions (e.g., happy or sad and young or old walk cycles), then use kinematic solvers
to smoothly string together these motions.

Brand and Hertzmann [19] describe style machines as a technique for stylistic
motion synthesis that works by learning motion patterns from a diverse set of motion
capture sequences. In the work of Li et al. [92], the data is divided into motion
textons, each of which can be modeled by a linear dynamic system. Motions are
synthesized by considering the likelihood of switching from one texton to the next.

Arikan and Forsyth [7] also present a method for automatic motion generation at
interactive rates. Here, the animator sets high-level constraints, like pose and position
of a character at specific frames, and a random search algorithm finds appropriate
pieces of motion data to concatenate. In a closely related work, the concept of a
motion graph is defined to control a character's locomotion [81]. The motion graph
contains original motion and automatically generated transitions. New motion can
be synthesized by building walks on the graph. This allows a user to have high-level
control over the motions of the character. It is used for generating different styles of
locomotion along arbitrary paths (see Fig. 5.2).

86 5 Stylistic Reuse of View-Dependent Animations

Fig. 5.2. A motion generated to fit to a path that spells "Motion Graphs" in cursive (image
courtesy Kovar et al. [81]).

In the work of Lee et al. [88], a new technique is developed for controlling a
character in real time using several possible interfaces. The user can choose from a
set of possible actions, sketch a path on the screen, or act out the motion in front of a
video camera. Animations are created by searching through a motion database using
a clustering algorithm. Arikan et al. [8] allow the user to annotate a motion database
and then paint a time line with the annotations to synthesize newer motions.

Hsu et al. [63] present a process for transforming an input motion into a new style
while preserving its original content. Their system learns to translate by analyzing
differences between performances of the same content in input and output styles.
It relies on a correspondence algorithm to align motions and a linear time-invariant
model to represent stylistic differences. Once the model is estimated with system
identification, it is capable of translating streaming input with simple linear opera­
tions at each frame.

In recent work, Lee et al. [89] present a technique for allowing animated char­
acters to navigate through a large virtual environment, which is constructed using a
set of building blocks. The building blocks are arbitrarily assembled to create novel
environments. Each block is annotated with a motion patch, which contains the in­
formation about what motions are available for animated characters within the block.

Our technique for synthesizing stylized animation is targeted toward generating
stylistic variations of the animations of a character depending on viewpoint changes
rather than synthesizing new motion in general. The basis of view-dependent anima­
tion provides us a setting to effect such variations very easily. We discuss the repre­
sentation of such a reuse methodology in terms of the framework (see Chapter 2) in
the following sections.

5.2 Animating Multiple Characters from the Same View Space 87

5.2 Animating Multiple Characters from the Same View Space

We want to reuse the view-dependent variations of a character to animate multiple
characters and create a novel animation.

Let us assume that a camera, C\, traces a path, Pi(v, d, f), on a view space, "VS.
A second camera, C2, traces another distinct path, P2(v, d, t), on "VS. The animation
generated by C\ can be thought of as an ordered set of n frames V\, given by

9\ = {V\ :l<i<n}, (5.1)

where p\ is the pose of the character in the i-th frame. The order implicitly imposed
on the set is the temporal sequence of the frames in the animation. Similarly, the
animation generated by C2 gives another ordered set of m frames V2,

<P2 = {VJ
2 : 1 < j < m]. (5.2)

The animations V\ and V2 are view-dependent variations of each other, i.e., they
are generated from the same view space. The poses p\ e *VS and pJ

2 e "VS are
view-dependent variations, or instances, of each other.

Key View Directions

New Animation with
Multiple Characters

Envelope

Camera Path 2 Camera 2

Fig. 5.3. Different camera paths traced on the same view space generate different instances
of the animation with different character poses. These different poses can be used to animate
multiple characters in a new synthesized animation.

by
We then define a novel animation with two characters as an ordered set Q, given

Q = {<q*j e c\k
2) : d[= p* and qk

2 = pk
2 V &, 1 < k < min(n, m)}, (5.3)

88 5 Stylistic Reuse of View-Dependent Animations

where (q* 0 cr5,) indicates that a frame k in Q consists of two character poses. The
© operator indicates that the two poses are being composed together to form the
synthesized animation frame. The composition can be done in 3D space if the two
poses are registered to a common coordinate system. The composition can also be
done in 2D image space by compositing the poses after they have been rendered into
the frame buffer (see Fig. 5.3). The novel animation has min(n, m) frames.

Multiple characters may visually obscure each other. If the compositing of the
characters is done in the image space, this can be handled by rendering them into
different buffers and maintaining separate depth buffer information to resolve occlu­
sion during compositing. If the compositing is done in the object space, then handling
occlusion is easier as standard rendering can be used.

In this manner, we can reuse the view-dependent variations of a character to ani­
mate multiple characters and create a new animation. As an example of this method
of reuse, we create a view space and plan the movement of two cameras on it.

In this particular example, we create a ballet animation for Hugo. We create an
animation where we want two characters to perform a coordinated ballet sequence;
however, both the characters are instances of the same character each performing
different ballet moves.

5.2.1 Planning, sketching, and creating the view-dependent models

First the storyboard for the animation is planned. Then the various key poses are
sketched, for which the view-dependent models are created later. This stage is guided
by the animator's conception of the various poses and camera moves that constitute
the animation. A part of the storyboard, illustrating some of planned key frames with
the poses of two characters and the rough camera movement, is shown in Fig. 5.4.
The red and green arrows show the planned camera movement. The black arrows
show the direction in which the character will appear to turn in the video (this move­
ment is because of the camera, which actually moves in the opposite direction). The
blue arrows show approximate directions in which the legs of the character will
move.

The animator uses the techniques explained in Chapter 3 to recover the cameras
from the sketches, which aligns the base mesh with the sketched pose, and to deform
the mesh to get the best possible match with the sketches. We show the posed meshes
in Fig. 5.5(b) for the sketches shown in Fig. 5.5(a). The poses and the recovered
cameras form the view-dependent models, which are then used to create the view
space.

5.2.2 Generating animations over a special view space

This example is an instance of the reuse strategy discussed in Section 5.2. However,
here we have a view space configuration that makes the implementation of this theory
nontrivial. This is because the example requires the character to stand in place and
perform certain ballet steps. Thus the view space is an aggregation of view spheres
that are separated only in time and not in space (see Section 2.2).

5.2 Animating Multiple Characters from the Same View Space

Roughly planned camera paths

89

• • ^ s

fr fcarf-MTIfc.*

Fig. 5.4. Part of the story board for the reuse animation example (see colour insert).

(a)

+-H4**
(b)

Fig. 5.5. (a) some of the sketches for the reuse example, (b) corresponding posed meshes seen
from the recovered cameras.

We cannot put all the views into a single view sphere because of the following
reasons: Such a construction is nonintuitive since it does not capture the temporal
characteristics desired by the animator. In this animation, the character has different
poses, for the same view direction, at different times. A single view sphere cannot
generate such an animation. Also, it causes the planned camera path to be undesir­
ably influenced (during interpolation for getting novel views) by the added views.
Multiple view spheres at the same point in space separated in time are perfectly

90 5 Stylistic Reuse of View-Dependent Animations

representable within our general framework (see Section 2.2); however, their imple­
mentation requires extra effort in order to generate an animation over such a view
space.

r-closest
Selected Key Viewpoints Camera Path

Common Key Viewpoint

First View Sphere
Current Viewpoint
Passing Through
Common Key Viewpoint

Common Key Viewpoint

Second View Sphere

Fig. 5.6. The camera transitioning from one view sphere to another when the point of transition
is a key viewpoint.

We move across four view spheres during the animation. The challenge in work­
ing with multiple view spheres lies in creating a seamless blend between the result­
ing animations as the viewpoint is transferred from one view sphere to another. Let
VS i and VS 2 be the two view spheres, and let us consider the case of transitioning
from VS \ to VS2- The converse case is symmetric. Let V = [vt• : 1 < / < 7C} and
V = {v'. : 1 < j <*K'} represent the set of key viewpoints of the two view spheres,
respectively. Let the point of transition from VS \ to VS 2 be vc such that vc e VS \
and vc e VS2- Note that the camera path has to pass through vc, by definition. We
have the following cases for the point, vc\

1. The common point, vc, is a key viewpoint, v, and the key poses associated with
v in the two view spheres are the same, m\ = m2

v = mv. In such a case the
transition is very easy. When the camera reaches vc, we simply swap the current
view sphere from VS \ to VS2.

2. The common point, vc, is a key viewpoint, v, and the key poses associated with
v in the two view spheres are different. We use the weighing function given in
Equation (3.14) for calculating the blending weights. If dthresh is the distance
threshold decided by the animator and v is the current camera position, then we
swap m\ and m2

v when d(v, v) = dthresh- We swap the view spheres themselves
only when v = v (see Fig. 5.6). It should be noted that only swapping the view
spheres when the current viewpoint reaches the point of transition will cause a
discontinuity in the animation. We need to swap the key poses as soon as the
current camera enters a region where the pose at v begins influencing the current
pose.

3. The common point, vc, is not a key viewpoint. In this case we compute the pose
at vc in VS \ and VS2 using the technique explained in Sections 2.2 and 2.3. We
then treat vc as if it were a key viewpoint and repeat the procedure explained in

5.2 Animating Multiple Characters from the Same View Space 91

the first step. Once the camera transitions into the new view sphere, vc ceases to
be a key viewpoint and the animation proceeds as usual.

Fig. 5.7. Camera 1 (in green) generates the green character, Camera 2 (in red) generates the
red character. Each view sphere generates two character poses in response to the two cameras
(see colour insert).

Hence, once we are able to transition smoothly across the view spheres, we can
then generate *P\ and P2 easily. Then the novel animation can be synthesized accord­
ing to Equation (5.3). We, however, still need to define the compositing method.

5.2.3 Rendering the animation

To get the desired animation, we plan the movement of two cameras across the view
spheres. Each of the cameras will generate one of our characters respectively (see
Fig. 5.7). Note that both the cameras cross over from one view sphere to another in
the center view sphere while maintaining a smooth camera path.

We composite the poses in 2D image space while transferring them to the frame-
buffer, to get one coherent dance sequence. We show a sequence of frames from our
final animation in Fig. 5.8. The characters in green and red are our two dancers.

Fig. 5.8. Frames from the synthesized animation (see colour insert).

92 5 Stylistic Reuse of View-Dependent Animations

5.3 Animating Multiple Characters from Multiple View Spaces

The reuse strategy presented in Section 5.2 uses multiple instances of the same char­
acter, each from the same view space. We want to further expand this idea and look
at animating groups of distinct characters together.

Consider that we have N distinct characters and we have constructed a view
space for each. Then we can generate the distinct animations, Pr, with 1 < r < N.
The generated P/s are distinct even if the path traced on each view space is the same
because the character in each view space is distinct. Each Pr is an ordered set of nr

frames and is given by Pr = {pj. : 1 < i < nr}. A new animation of a group of these
distinct characters can be constructed as

N N

Q = K 0 qf > : df = P? V *, 1< * < mhi(/i/)}, (5.4)

where the @ operator indicates that N poses are being composed together to form
the synthesized animation frame.

We now look at the problem of how to control the paths we want to trace on the
N distinct view spaces. Let a camera be associated with every view space. We call
this camera the local camera for the corresponding view space. Let the path traced
by this camera be Pr(vr, dr, t_r). We define a single global camera and the path traced
by this camera as *$. This path ty is the trajectory of the global camera in 3D space,
defined in the global coordinate system. It is not a path on any of the view spaces.

We can define 3. path-mapping function fr, Pr = / r0P), 1 < r < N. The function
fr maps the global path to the corresponding local path on the view space. The func­
tion fr is a coordinate system transfer function from the global coordinate system to
the local coordinate system of each view space. In order to create the novel anima­
tion, the animator has to plan the camera trajectory only for the global camera and
define the various / r ' s . Then moving the global camera along ^ will cause each of the
local cameras to move along the corresponding Pr on their respective view spaces.
This will generate the distinct animations, P/s. These can be composited together
to generate the final animation (see Fig. 5.9). A straightforward choice for the com­
positing method is to render the various poses as they appear when viewed through
the global camera. This technique automatically composites them in the rendered
frame. The animator, however, can use any other compositing method as required
for the animation. Before starting the animation process, the animator has to place
the various characters in the global coordinate system as a part of global scene defi­
nition. Hence, the animator already knows the coordinate system transfer function gr

from the global coordinate system to the local coordinate system of each character.
The mapping from the local coordinate system of the character to the coordinate sys­
tem of the view space hr is easily recovered during view space construction. Thus,
we have fr = gr° K (where o represents function composition).

We have used this reuse technique to animate a crowd of characters in the Mexi­
can Wave animation. In this example, the same character is replicated many times to
generate a crowd [shown in Fig. 5.10(b)]. Each character has a local view space as

5.3 Animating Multiple Characters from Multiple View Spaces 93

Fig. 5.9. Animating multiple characters from multiple view spaces.

(a) (h) (u

Fig. 5.10. The Mexican Wave animation (see colour insert).

shown in Fig. 5.10(a). The local key viewpoints are shown in blue and red, while the
current local camera is shown in green. Moving this local camera on the path shown
(in green) causes the single character's pose to change as it is supposed to change
during the crowd animation. The movement of the global camera is mapped to each
of these view spaces to move the corresponding local cameras, which generates the
final animation. The path of the global camera and current look-at is shown in green
in Fig. 5.10(b). Note that the crest of the Mexican wave is in front of the current

94 5 Stylistic Reuse of View-Dependent Animations

camera look-at. The amplitude of the wave decreases as one moves away from the
current look-at vector of the global camera in either direction. This is because the
mapping function has been designed to curtail the wave at the boundary of the cur­
rent view frustum. We also perform conservative view culling to efficiently render
the crowd. One of the frames of the final animation is shown in Fig. 5.10(c). The
animation of a single character due to camera movement in a local view space, the
generation of the crowd, and its animation due to the global camera movement are
shown in a video.

In this example, it is not difficult to find the path-mapping function, fr, that will
generate the wave in the crowd for a specific movement of the global camera. Fig­
ure 5.11 shows the position of the local cameras in their respective local view spaces
for a given position of the global camera. The mapping ensures that the local cam­
eras in local view spaces outside the bounds of the current view frustum do not move.
This mapping function can be intuitively constructed. For a general case, however,
designing a path-mapping function to get a desired animation may not always be
easy.

Path of
global camera

Current
pose of
individual
characters

Fig. 5.11. Mapping the movement of global camera to the local cameras.

5.4 Animating Different Parts of a Single Character from a Single
View Space

In the previous sections, we looked at the problem of synthesizing a novel animation
with multiple characters using view-dependent variations of one or many characters.
Now we draw inspiration from cubist paintings, which portray the parts of the same

5.4 Animating Different Parts of a Single Character from a Single View Space 95

character in a painting from different perspectives. Paintings by Pablo Picasso, for
example, the Femme Nue Accroupie(l959), typify this style of compositing of dif­
ferent views of different parts of a scene into a single projection. They are a perfect
example of a scene that can be visually thought of as broken into disjoint parts that
are viewed from different perspectives and then patched back together. Similarly, we
want to generate a new animation where different parts of the same character are con­
trolled by separate cameras. All the cameras move on the same view space. The final
animation will have the character with each separately animated body part blended
together.

In order to do this we consider a pose, p, to be made up of a union of M body
parts, bM, i.e., p = (j£ii &«• We assume there is no overlap between the body parts,
i.e., they are distinct and mutually exclusive. Now, we associate a camera Cu with
a body part bu. Each camera traces a path, ^w(vM,^M^M), on the view space. The
synthesized animation of n frames, Q, is then given by

Q = [j : q*' = p1" : 1 < i < w} . (5.5)

At any point pu on a camera path, the configuration of the corresponding body
part, bM, is computed by using a process analogous to pose computation at pu for
a normal view-dependent animation as given in Section 2.2. We can also associate
other parameters, e.g., scaling of each body part, with their respective cameras. We
can then vary these parameters when their corresponding cameras move. The various
body parts are then composited together to form the final pose (see Fig. 5.12). The
compositing method used is the animator's prerogative.

We present two variations of this reuse technique as examples. In the first, dif­
ferent body parts are viewed from their respective cameras, and the views are com­
posited in 2D image space to generate a multiperspective image. This compositing
technique is similar to the one given by Coleman and Singh [29]. We associate six
body cameras, one each with the head, torso, two arms, and two legs. We explicitly
associate the cameras with the bones of the embedded skeleton for each body part.
This automatically groups the mesh vertices into various body parts, as each mesh
vertex is uniquely contained in a control lattice cell, which in turn is associated to
exactly one bone of the embedded skeleton. We also associate scaling parameters of
the various body parts with the position of their respective body cameras. Since each
body camera is at a different position, each body part is scaled differently, in addition
to having a different perspective. We then composite the view from each to get the
final image. In Fig. 5.13(a), the head of the character is seen from the right, the torso
from the front, the left hand from the top, the right hand from the left bottom, the left
foot from the front, while the right foot is seen from the right side. In Fig. 5.13(b),
the head of the character is seen from the left bottom, the torso from the right top, the
left hand from the front, the right hand from the top, the left foot from the right side,
and the right foot from the left side. This may be thought of as the view-dependent
analogue of cubist paintings.

In the second variation, we again associate six body cameras with the various
body parts. The composition of the body parts is, however, done in object space,
i.e., in 3D. This is done by taking one model of the character and posing the various

96 5 Stylistic Reuse of View-Dependent Animations

yl New animation
with different
parts of the
character
controlled by
different cameras

Fig. 5.12. Animating different parts of a single character from a single view space.

(a) (b)

Fig. 5.13. Two examples of multiperspective images.

5.5 Chapter Summary 97

body parts as per the associated camera. The connectivity of the body parts is not
disturbed, and hence they can be blended in object space. The animation is rendered
from the viewpoint of a master camera. The body cameras follow the movement of
the master camera. Figure 5.14 shows frames from the three animations we have
generated using this technique, each with a different set of scaling parameters for the
various body parts. In the first case [see Fig. 5.14(a)] there is no scaling applied to
each body part; so as the master camera moves, the various body parts are posed as
per the key views and the effect is similar to a normal view-dependent animation. In
the second case [see Fig. 5.14(b)] scaling applied to each body part is such that it
exaggerates the perspective effect, i.e., the part that is closer to the camera appears
very big, while the part that is farther away appears very small. This effect can be
seen in the legs and the head as the camera moves from below the character to the
top. As the camera moves, the scaling associated with the body parts changes to
maintain the exaggerated perspective effect. The hands and the torso are not scaled.
In the third case [see Fig. 5.14(c)], the scaling applied counters the perspective effect,
i.e., body parts that are farther appear larger.

(a) (b) (c)

Fig. 5.14. Compositing in object space and rendering from the master camera.

As an example of the elegance of our reuse technique, we stylize the Hugo's
High Jump animation by associating different cameras with different body parts of
the character. Sample frames from this animation are shown in Fig. 5.15. In this
animation, as Hugo jumps, his limbs stretch and his head becomes larger. This is
made possible by the scaling parameters associated with the various moving body
cameras. As Hugo falls down, he resumes his original proportions. In this example
also, the body cameras follow the movement of one master camera.

5.5 Chapter Summary

In this chapter, we explored the different possibilities in reusing view-dependent an­
imations to synthesize novel animations. We discussed the state of the art of stylized

98 5 Stylistic Reuse of View-Dependent Animations

Fig. 5.15. Frames from the stylized Hugo's High Jump animation.

animation. We find a large body of literature on nonphotorealistic animation with
emphasis on creating particular rendering styles like pen and ink, charcoal drawing,
and impressionist paintings. Considerable work has been done in the area of creating
nonphotorealistic versions of still images and videos. We also review the work done
on animation synthesis from motion databases. Many of these algorithms, like mo­
tion graphs, search a database of recorded motion and generate a smooth sequence
comprising short animation clips. The graph encodes the transition from one clip to
another, and the search is pruned using various constraints and heuristics.

We then presented our techniques for stylistic reuse of view-dependent anima­
tions. We introduced three novel reuse strategies. First, we showed how to animate
multiple characters from the same view space. Next, we showed how to animate
multiple characters from multiple view spaces. We used this technique to animate
a crowd of characters. We have drawn inspiration from cubist paintings and created
their view-dependent analogues by using different cameras to control various body
parts of the same character. Thus, we have shown that reusing view-dependent ani­
mation is possible using the framework and it can be used to synthesize a variety of
interesting stylized animations. We demonstrated the efficacy of the framework for
stylistic reuse by generating complex animations.

We believe that the stylistic reuse of view-dependent animations can lead to the
creation of many interesting animations easily and efficiently.

6

Discussion and Future Directions

6.1 Discussion

In this book, we have presented a framework for creating moving-camera character
animations. It is often arduous for the animator to manually stage a character's action
when the point of view changes in each frame. We have shown that view-dependent
animation offers a natural solution to this problem. Since in view-dependent ani­
mation the character's action depends on the view, the camera and character pose
association, once specified by the animator, is maintained throughout the animation.
In the course of designing a general framework that encapsulates the rich diversity
offered by moving-camera animations, we have solved many challenging problems.

We present a concise summary of the features of the framework for view-
dependent character animation.

1. We have formulated the concept of a view space of key views and associated
key character poses. This provides a formal theoretical basis for representing
view-dependent animations and forms the core of the framework.
• The view space representation captures all the information about the views

and character poses efficiently and concisely.
• The animator can trace camera paths on the view space, and the correspond­

ing animation is generated in real time. Simple interpolation schemes are
used to generate in-between character poses from the space of key poses
while the rendering camera moves on the path specified by the animator.

2. The view space embodies all the information contained in the various view (or
camera) parameters. Robust computer vision techniques have been used to esti­
mate these parameters from different types of inputs.
• The algorithms used to recover cameras from sketches are numerically ro­

bust and efficient. We are able to recover a wide variety of cameras, ranging
from the orthographic to the full projective, from a sketch. This allows us to
reproduce the viewpoint intended in the sketch more faithfully in the anima­
tion. The algorithms are resilient to many types of sketches, which can be

100 6 Discussion and Future Directions

mannequin sketches, stick-figure sketches, or more accurate sketches of the
character.

• The algorithm used to track the cameras in video input, is stable. The cam­
eras recovered by the tracker generate a view space. We show that for a given
video we get a single camera path on this view space, which reproduces the
camera movement in the video.

3. We have presented a pipeline to extract cameras and character poses and generate
a view space from sketches. In order to pose the character from a sketch, we
have developed two novel view-dependent algorithms. These allow us to embed
a multilayered deformation system into a view-dependent setting and integrate
it with computer vision techniques.
• The view-dependent posing algorithm poses the skeleton embedded inside

the mesh model of the character in such a manner that the pose matches the
sketched pose when viewed through the recovered camera. The algorithm
works at interactive rates and provides instant feedback to the animator. The
animator also has the option of using IK directly to manually fine tune the
pose recovered by the algorithm.

• The view-dependent deformation algorithm deforms the mesh model of the
3D character such that the silhouette of the mesh model matches the outline
of the sketched character when viewed through the recovered camera. The
algorithm uses DFFD as a backend to displace the mesh vertices. The solu­
tion is pruned space using projection constraints derived from the recovered
camera.

• We chose to use IK and DFFD and have modified and integrated them into
the framework. They are sufficient to demonstrate the viability of the frame­
work, while being reasonably efficient at the same time. However, we would
like to point out that other alternatives to these techniques exist in recent liter­
ature (see Sections. 3.5.1 and 3.5.4). These can be suitably adapted to replace
IK and DFFD without affecting the view-dependent posing and deformation
algorithms. The implementation of our pipeline in this book should be con­
sidered as a concept demonstration.

4. Multimodal authoring of view-dependent animations is a challenging problem.
We have presented a solution to this problem and illustrated it using interesting
examples.
• We develop a pipeline to create a view space from multimodal inputs. We

demonstrate this process for video input and present arguments to show that
similar pipelines can be constructed for other input types.

• The view space serves as the common ground for all types of inputs and al­
lows the animator to mix the information contained in them to create the
desired animation. We have presented an example of generating a view-
dependent animation using a video sequence as input.

• We present an example that demonstrates how it is possible to combine
sketch- and video-based inputs for creating a moving-camera character ani­
mation. The camera path is extracted from a video and transplanted onto a

6.1 Discussion 101

view space created from sketches. We have developed an algorithm for au­
tomatic transplantation of the camera path by registering the corresponding
coordinate systems with each other. We can augment the view space with
new key viewpoints and poses. It is also possible to augment the camera
path itself by adding new path segments and generate a seamlessly blended
animation from the various path segments.

5. The framework is not meant to replace the complete animation pipeline, but
rather complement it. View-dependent animation can be seamlessly blended
with non-view-dependent animation, and we demonstrate this in many exam­
ples.

6. Although we have developed algorithms for automating most of the stages of our
work as far as possible, there is still a manual fall-back option for each stage to
give the animator adequate control over the animation. The animator can decide
to manually tune the output at any stage if so desired.

7. The ability to understand and explore view-dependent animation using the
framework gives us an insight into the various applications of view-dependent
animation. We formalize the concept of stylistic reuse of view-dependent anima­
tions in terms of our framework.
• We define a synthesized animation as a combination of the animations gen­

erated by the view-dependent instances of a single character. The different
instances appear as multiple characters in the final animation. An example of
this formulation generates a complex ballet animation, which has two view-
dependent instances of the same character performing different, yet synchro­
nized, ballet moves.

• We also formulate two other possible reuse strategies. In the first, we propose
that it is possible to generalize our technique to encompass view-dependent
animations of a group of different characters. For the second, we have drawn
inspiration from cubist paintings and created their view-dependent analogues
by using different cameras to control various body parts of the same charac­
ter.

8. We have implemented the following components of this framework: the inverse
kinematics and direct free-form deformation engines, exponential map param­
eterization of rotations, joint reach cones, Kalman-filter-based contour tracker,
camera recovery, and character posing algorithms. We would like to integrate
the view-dependent character animation work flow into a commercial anima­
tion production pipeline, and have professional animation artists evaluate it for
further improvements.

We have shown that view-dependent animation is an easy, efficient, and intu­
itive solution for creating moving-camera character animation. We, however, feel
that there is a lot of potential in the method, which can be harnessed to solve a vari­
ety of other problems. In the next section, we discuss some interesting problems for
future work.

102 6 Discussion and Future Directions

6.2 Future Directions

We discuss some interesting problems which can be solved using our framework and
methods for extending or improving it.

Integrating motion capture and multiple video streams: We have already argued
theoretically that the framework can represent information contained in many differ­
ent forms of input using the view space. It would be interesting to practically imple­
ment these alternate pipelines, to experiment with the myriad, interesting animations
that can then be generated.

Optical motion capture setups have camera information because all the cameras
are calibrated. The poses of the characters are recovered from the motion capture
data. Since the character pose and camera association is inherent to the motion cap­
ture setup, it naturally maps to a view space. Similarly, multiple synchronized video
streams can be used to recover 3D pose information of characters. Each of these
videos can be mapped onto a different path on a view space.

Once a view space has been created, the framework offers tremendous creative
freedom to the animator, as having one coherent representation for all the informa­
tion from these myriad sources allows the animator to mix and match them very
easily.

View-dependent animation of multiple characters: We have demonstrated our
techniques using many examples. All these, however, feature a single animated char­
acter. The view space formalism is not restricted to a solitary character. Multiple
characters can be associated with a key view in a view space. Tracing a camera path
will then animate all these characters together. Another way to extend this formalism
is to associate the configuration of the complete scene (i.e., all objects in the scene)
with the key views (i.e., adopt a scene-centric approach rather than a character-
centric one). Then, moving the camera would result in an animation with one scene
configuration changing into another.

View-dependent timing of animation: In this work, we have not explicitly dealt
with the issue of animation timing. The timing in our animations is derived from the
sampling of the camera positions on the camera path. Timing, however, is one of
the very fundamental principles of animation. It is often seen that timing in close-up
shots is different from the timing in medium- or long-range shots. It can be argued
that in a close-up shot, an animator wants to show some detail, and hence, the close-
up view is timed slower. A sweeping shot of a landscape showing the character run­
ning at a high speed from faraway will have timing different from a zoom-in shot that
follows the character closely during the run. Hence, we can associate the timing of an
animation with the camera in such cases. This is the motivation behind exploring a
view-dependent timing strategy. If every point of the view space can be painted with
a timing attribute, then the rendering camera will automatically have timing informa­
tion associated with it. The challenge, however, is to develop an intuitive interface
for the animator to specify this timing information on the view space. It will also be

6.2 Future Directions 103

necessary to resolve timing inconsistencies that may arise due to arbitrary camera
paths on the view space.

View-dependent lighting and texture: We dealt with 3D character animation in
this entire work. Current animation productions, however, use a hybrid of 2D and 3D
techniques for character animation. Cooper describes [31] how animators at Dream­
Works used a traditionally drawn 2D animated horse for the primary character in
the movie Spirit: Stallion of the Cimarron [9] and merged it seamlessly into beau­
tiful 3D sets and camera moves. The lighting and tonal texture, in both 2D and 3D,
are dependent on the final rendering camera. Hence, they have a "view-dependence"
property, which can be modeled using the framework.

The above mentioned directions of future work are some of the ways in which
the framework can be used and extended. View dependence as a property, however,
has been exploited in various areas. Some of these include creating and rendering
multiresolution and progressive meshes [62], generating levels of detail (LOD) for
complex scenes [94], fast displacement mapping [133], and point-based nonphoto-
realistic rendering [33]. All of these can be associated with the view space, which
essentially embodies the concept of view dependence. These open many interesting
and different directions for future work.

A

Camera Models and Computation of the Camera
Matrix

A camera is a mapping between the 3D world (object space) and a 2D image. Here
we present in brief a few camera models which are matrices with particular properties
that represent the camera mapping. We also present two algorithms to compute the
projective and affine cameras given a set of point correspondences.

A.l The Pinhole Camera Model

Consider a central projection of points in space onto a plane. Let the center of pro­
jection be the origin of a Euclidean coordinate system, and consider the plane z = f,
which is called the image plane or focal plane (see Fig. A.l). Under this pinhole
camera model, a point X = (X, K,Z)T is mapped to a point x = (fX/Z,fY/Z,f)T on
the image plane. Then if the world and image points are represented by homogeneous
vectors, the central projection is expressed as a linear mapping given by

(fx)
\fY
U J

=
[/ 01

/ o
[1 0 J

(x)
Y
7

lii
Equation (A.l) assumed that the origin of the camera coordinate system is at

the origin of the world coordinate system. It also assumed that the world Z axis is
the principal axis of the camera. In general, points in space are expressed in terms
of a different Euclidean coordinate frame than the camera coordinate system. These
world and the camera coordinate systems are related via a rotation, R, and a transla­
tion, t. In Equation (A.l) we also assumed the image plane origin coincides with the
principal point. This need not be the case always. In the most general case, a 3 x 4
camera projection matrix, P, can be decomposed as

P = K[R|t] . (A.2)

Here the matrix K maps the points from the camera coordinate system to the image
coordinate system.

106 A Camera Models and Computation of the Camera Matrix

Fig. A.l. Pinhole camera geometry: C is the camera center and p the principal point. Here the
camera center is placed at the coordinate origin.

A.2 Anatomy of the Projective Camera

A general projective camera may be decomposed into blocks according to P =
[M|p4], where M is a 3 x 3 matrix. We now have the following properties for a
projective camera:

Camera center: The camera center is the right null space C of P, i.e., PC = 0. For
finite cameras (M is not singular) we get

A.3 Cameras at Infinity 107

C = rn (A.3)

Column points: For / = 1,2,3, the column vectors p, are vanishing points in the
image, corresponding to the X, Y, and Z axes, respectively. Column P4 is the
image of the coordinate origin.

Principal plane: The principal plane of the camera is P3, the last row of P.
Axis planes: The planes P1 and P2 (the first and the second rows of P) represent

planes in space through the camera center, corresponding to points that map to
the image lines x = 0 and v = 0, respectively.

Principal point: The image point Xo = Mm3 is the principal point of the camera
where m3 is the third row of M.

Principal ray: The principal ray (axis) of the camera is the ray passing through the
camera center C with the direction m3 . The principal axis vector v = det(M)m3

is directed toward the front of the camera, where det(M) is the determinant of
M.

A.3 Cameras at Infinity

An affine camera is one that has a camera matrix P in which the last row P3 T is of
the form (0,0,0,1). For such cameras, M is singular. The camera center C is given
by

- (!) •
(A.4)

where d is the null 3-vector of M, i.e., Md = 0. The vector d also gives the direction
of parallel projection.

There exists a hierarchy of camera models representing progressively more gen­
eral cases of parallel projection. These are

Orthographic projection: An orthographic camera has 5 degrees of freedom, namely,
three parameters describing the rotation matrix R, plus the two offset parameters
t\ and t2. The first two rows of the matrix are orthogonal and of unit norm, and
f3 = l.

P =

r r i r

r 2 T

0T

t\''-
ti
1 j

(A.5)

Scaled orthographic projection: A scaled orthographic projection is an orthographic
projection followed by isotropic scaling, and is given by

P =
\k]

k

lj

[r l T * i
r2 T t2

[0 T 1
=

"r1T *i]
r2T h
0 T 1/jfcJ

(A.6)

It has 6 degrees of freedom. The first two rows are orthogonal and of equal norm.

108 A Camera Models and Computation of the Camera Matrix

Weak perspective projection: Here the scale factors in the two axial directions are
not equal. Such a camera matrix is of the form

P = av

1

r l T tx

r 2 T t2

0 T 1
(A.7)

It has 7 degrees of freedom, and the first two rows of the matrix are orthogonal.
Affine camera: The general affine camera has an additional skew term, and is of the

form

P A =

~ax s 1
ay

[r , T f ,
r2T t2

[0 T 1
—

mn m\2 ^ n î j
m2\ m22 m23 h
0 0 0 1 J

(A.8)

A.4 Computation of the Projective Camera Matrix

Given a number of point correspondences X, <-> X/ between 3D points X; and 2D
image points X/, we want to find a 3 x 4 camera matrix P such that x,- = PX/ for all /.
If the 7-th row of the matrix P is denoted by P J T , then we can write

PX/ =

fP lTX;^
>2TX,

I P 3 T x I
(A.9)

Writing x, = (Xi,yi, w,)T, the cross product x, x PX/ can be written explicitly as

xt x PX/
(yi1#TXi-wiV

2TXi
>\

W / P 1 T X / - J C / P 3 T X /

U/P2TX/-y/PlTX/
(A. 10)

Since P^TX/ = XjFj for j = 1 . . . 3 and x/ x PX/ = 0, we get

/ p i \

P 2

P 3
= 0. (A. 11)

0T -wtXj yiXj "
wtXj 0 T -xtXj
-yiXj XiXj 0 T

We may choose to use only the first two equations because the three equations of
Equation (A. 11) are linearly dependent. From a set of n point correspondences, we
obtain a 2n x 12 matrix A by stacking up the equations for each correspondence. The
projection matrix P is computed by solving the set of equations Ap = 0, where p is
the vector containing the entries of the matrix P, i.e.,

P\ Pi P3
PA P5 Pe I • (A. 12)
Pi Ps P9_

We use an algorithm called the Normalized Direct Linear Transformation(DLT)
Algorithm (reproduced from Hartley and Zisserman [52] in Algorithm A. l) to obtain

A.5 Computation of the Affine Camera Matrix 109

the solution. Algorithm A.l minimizes ||Ap|| subject to ||p|| = 1. The residual Ap is
known as the algebraic error. Normalizing the data points before performing DLT
increases the numerical accuracy of the results and also makes the algorithm invariant
to arbitrary choices of scale and coordinate origin. The normalization is better suited
to cases where the variation in the depth of points from the camera is relatively less.
Since all our 3D data points lie on the character, their distribution in space is compact,
and so normalization is the right thing to do. Hartley and Zisserman [52] discuss the
numerical stability and error analysis of the DLT in greater detail.

Require: Given n > 6 world to image point correspondences {X; <-» X/}.

1 begin
2 Normalization of X: Compute a similarity transformation S, consisting of

a translation and scaling, that takes points X/ to a new set of points % such
that the centroid of the points X,- is the world coordinate origin (0,0,0)T

and their average distance from the origin is V3.
3 Normalization of x: Similarly compute a similarity transformation T,

consisting of a translation and scaling, that takes points X; to a new set of
points x/ such that the centroid of the points xf- is the image coordinate
origin (0,0)T and their average distance from the origin is V2.

4 DLT: Form the 2n x 12 matrix A by stacking up the equations [see
Equation (A.l 1)] for each correspondence {X/ <-> X/}. Write p for the
vector containing the entries of the matrix P. A solution of Ap = 0, subject
to HpH = 1, is obtained from the unit singular vector of A corresponding to
the smallest singular value. Specifically this is the S VD of A gives
A = UDVT with D diagonal with positive entries arranged in the
descending order down the diagonal; then p is the last column of V.

5 Denormalization: The camera matrix for the original, unnormalized
coordinates is obtained from P as

P = T'1PS. (A. 13)

6 end

Algorithm A.l: Normalized Direct Linear Transformation Algorithm.

A.5 Computation of the Affine Camera Matrix

The DLT estimation of the camera in this case minimizes ||Ap|| subject to the condi­
tion that the last row of the projection matrix P3 T = (0,0,0,1).

110 A Camera Models and Computation of the Camera Matrix

Require: Given n > 4 world to image point correspondences {X; <-> x,}.

1 begin
2 Normalization of X: Compute a similarity transformation S, consisting of

a translation and scaling, that takes points X/ to a new set of points X; such
that the centroid of the points X/ is the world coordinate origin (0,0,0)T

and their average distance from the origin is V3.
3 Normalization of x: Similarly compute a similarity transformation T,

consisting of a translation and scaling, that takes points X/ to a new set of
points x/ such that the centroid of the points x, is the image coordinate
origin (0,0)T and their average distance from the origin is V2.

4 Each correspondence {X; <-» X/} contributes equations

XJ 0 T

oT X7 (5)-(S) (A. 14)

which are stacked into a 2 n x 8 matrix equation Agpg = b, where pg is the
8-vector containing the first two rows of P^.

5 The solution is obtained by the pseudoinverse of Ag

P8=A£b (A. 15)

andP3T = (0,0,0,1).
6 Denormalization: The camera matrix for the original, unnormalized

coordinates is obtained from P^ as

P A = T - 1 P A S . (A.16)

7 end

Algorithm A.2: The Gold Standard Algorithm.

Suppose all the points X/ are normalized such that X/ = (X,-, K/,Zj, 1)T and
X; = (JC,-, v/, Zi, 1)T, and the last row of P has the affine form. Then for a single corre­
spondence we get the equation

0T -XJ
XJ 0 T (£)•&)-•

These equations are stacked up and the system is solved to get an estimate the
affine camera. Algorithm A.2 (reproduced from Hartley and Zisserman [52]) gives
the Gold Standard Algorithm for estimating an affine camera matrix P^. Under the
assumption of Gaussian measurement errors this algorithm returns the Maximum
Likelihood estimate of P^. Hartley and Zisserman [52] discuss the numerical stability
and error analysis of the Gold Standard Algorithm in greater detail.

B

The Exponential Map Parameterization of Rotations

The primary applications of rotations in graphics are to encode orientations and de­
scribe and control the motion of rigid bodies and articulations in transformation hi­
erarchies. We use inverse kinematics for posing the skeleton embedded inside the
character, and we want our posing algorithm to be efficient and work at interactive
rates. For this purpose an appropriate choice of rotation parameterization is essential.
Parameterizing rotations is problematic mainly because rotations are non-Euclidean
in nature (traveling infinitely far in any direction will bring you back to your start­
ing point an infinite number of times). Any attempt to parameterize the entire set
of 3-degree-of-freedom (DOF) rotations by an open subset of Euclidean space (as
do Euler angles) will suffer from the gimbal lock, i.e., the loss of rotational degrees
of freedom, due to singularities1 in the parameter space. Parameterizations that are
themselves defined over non-Euclidean spaces (such as the set of unit quaternions
embedded in R4) may remain singularity-free, and thus avoid the gimbal lock. Em­
ploying such parameterizations is complicated, however, since the numerical tools
most often employed in graphics assume Euclidean parameterizations; therefore, we
must either develop new tools whose domains are non-Euclidean or impose explicit
constraints that distinguish the non-Euclidean parameter space from the Euclidean
space in which it is embedded (as we must impose constraints that ensure quater­
nions retain unit length).

Every nonzero vector in R3 has a direction and magnitude. We can associate a
rotation with each vector by specifying the direction as an axis of rotation and the
magnitude as the amount by which to rotate around the axis. If we augment this
relationship by associating the zero vector with the identity rotation, the relation­
ship is continuous and is known as the exponential map [48]. Unlike the quaternion
parameterization, this parameterization is Euclidean, so it contains singularities. In
the following sections we present the exponential map in detail and also examine its
strengths and limitations as a rotation parameterization.

1 Intuitively, a singularity is a continuous subspace of the parameter space, all of whose
elements correspond to the same rotation; thus, movement within the subspace produces
no change in rotation.

112 B The Exponential Map Parameterization of Rotations

B.l Exponential Maps

The exponential map maps a vector in R3 describing the axis and magnitude of a
3-DOF rotation to the corresponding rotation. There are many different formulations
of the exponential map. There are, however, several advantages to using a map from
R3 to §3 and using standard quaternion-to-matrix formulae for conversion to §0(3).
Here R3 is the 3D Euclidean space. §3 is the underlying set of the subgroup of unit-
length quaternions. SO(3) is the group of all 3x3 matrices whose columns are of unit
length and are mutually orthogonal, under the operation of matrix multiplication.

The advantages of not directly mapping to §0(3) are that the inverse of the ex­
ponential map, the log map from S3 to R3, is much simpler than the log map from
§0(3) to R3 and that it is easier to convert to and from §3 when we need to perform
optimal interpolation of rotations using quaternions.

We can formulate an exponential map from R3 to §3 as follows:

([0,0,0,1]T ifv = 0 ,
l2m=o(5v)m = [sin(i0)*,cos(i0)]T if v * 0 , U 5 ' u

where 6 = ||v|| and v = v/||v||, which maps v to a unit quaternion representing a
rotation of 6 (i.e., ||v||) about v, where (\\)m is computed using quaternion multipli­
cation. The right-hand side of Equation (B.l) is exactly the same as is used to create
a unit quaternion from a (unit) axis-angle description of a rotation. The exponential
map, however, allows us to encode both the magnitude and axis of rotation into a
single 3-vector.

The only problem with this particular formulation is that calculating v = v/||v||,
as ||v|| goes to zero, becomes numerically unstable. We can compute the exponential
map robustly in the neighbourhood of the origin by rearranging the above formula.
Let

v T sin(±0)
q = e* = [sin(i0)-,cos(i0)]T = [— ^ v , c o s (i 0)] T . (B.2)

Hence, we reorganize the problematic term so that instead of computing v/||v||
(i.e., v/0), we compute sin(^0)/0. This is because sin(^0)/0 = \sinc(\6) and sine,
the sine cardinal function as given by Equation (B.3), is known to be computable
and continuous at and around zero.

. . . . / I for0 = O,
sincW = \ m otherwise. (B ' 3)

Since sine is not included in standard math libraries, we compute it using the
Taylor expansion of sin as

sin(lfl) = l(e (f)^_(f£
6 6{2 + 3! 5! + -

1 62 6*
= 2 + 4 8 " 2 ^ ! + - (B - 4)

B.2 Derivatives with Respect to the Exponential Maps 113

Hence, we see that the term is well-defined and that evaluating the entire infinite
series would give us the exact value. But as 6 —> 0, each successive term is smaller
than the last, and terms are alternately added and subtracted; so if we approximate
the true value by the first n terms, the error is no greater than the magnitude of the
(n+ l)st term. In fact, since machine precision is limited, we can evaluate the function
with no numerical error. When 6 < ^machine precision, use just the first two terms
of the expansion

!^Ll+*. (B.5)
0 2 48 V }

Otherwise, we perform the actual sin computation and division by 6. Since all the
dropped terms involve factors of 6, the approximation and actual function agree at
(9 = 0.

B.2 Derivatives with Respect to the Exponential Maps

In order to compute the Jacobian of a node in a transformation hierarchy with respect
to all of the end effectors below it in the hierarchy, we have to compute the partial
derivatives of the rotation matrix. We are, in essence, reparameterizing quaternions;
hence, we can compute the derivatives of R (the rotation matrix) with respect to its
exponential map parameters by applying the chain rule. We compute dR/d\ as

dR dR dq
o\ dq o\

Since we already know how to compute the partial derivatives dR/<9q, the only
new quantities we need are the 12 partial derivatives of the quaternion with respect
to its exponential map parameters (i.e., dq/d\). To express the similarity in the form
of the 12 derivatives, we let / range over the three components of q that make up its
vector part and n range over the components of v. The formulae for computing the
partial derivatives of q with respect to v are, in the usual case where 6 » 0

dq^ __]_ sin(^fl)
dvn " 2Vn 0 '
o (\ ocosUfl) 2 s i n (^) sin(±0) . r .

OSL = J ivn^r- ~ rt-ih + -t-lf l = n • rB 7̂

where the quaternion q is given by [qx, qy, qz, qw]T. In the neighbourhood of 6 —> 0,
we can again replace sin and cos by their Taylor series expansions and, after simplify­
ing, discard all terms with powers 04 or greater in the numerator. If TSinc(#) = \ - |g,
then the partial derivatives of q have the form

^ = - iv„TSinc(0) ,
dv„ 2
£ ^ = { 3 (| i - l) + TSinc(0) if/= n, (B g)
dv" (l K | i - l) + TSinc(0)if/*n.

114 B The Exponential Map Parameterization of Rotations

B.3 Strengths and Limitations of the Exponential Map

No single parameterization of rotations is best for all applications (in our own sys­
tem for view-dependent animation we use the exponential map and Euler angles for
inverse kinematics, quaternions for interpolation, and rotation matrices for transfor­
mation hierarchies). The exponential map computation of 3- and 2-DOF rotations,
however, is very robust and outperforms other parameterizations for inverse kine­
matics computations. We conclude with a summary of the main strengths and weak­
nesses of the exponential map.

Strengths:

• The exponential map remains free from gimbal lock over a range of axis-angle
rotations up to magnitude 2/r, which is suitable for any control or optimization
algorithm that operates at single instants of time, provided time marches forward
in small steps.

• The exponential map uses three parameters to parameterize §0(3), which means
- There is no need for normalization after integrating ordinary differential

equations.
- There is no danger of falling out of a meaningful subspace (like falling off S3

in R4), so we do not need explicit constraints.
- Smaller dimension state vectors combine with the previous point to result in

faster performance.
• Interpolation using ordinary cubic splines is possible and may often produce vi­

sually acceptable results provided successive key frames are not too distant from
each other in R3.

Limitations:

• There is no simple formula for combining rotations in R3 akin to quaternion
multiplication in S3 or matrix multiplication in SO(3).

c
Spherical Joint Limits with Reach Cones

The task of animating humans and animals is greatly aided by automatic constraints,
such as joint limits and collision detection, which provide natural restrictions on re­
alistic motion. Such constraints are important in interactive placement, as then the
user does not have to recognize unrealistic positions visually. They are essential in
more automated methods, such as physical simulation, inverse kinematics, and mo­
tion capture from monocular video. Generally, articulated body models used in com­
puter graphics model joints with more than 1-DOF as a sequence of 1-DOF joints
specified as Euler angles. The obvious way to specify a range of movement for 1-
DOF hinge joints is to give a minimum and maximum value in degrees. Joint limits
on 2- or 3-DOF joints then become ranges around each single axis. If the longitudi­
nal axis of a segment distal to the joint is the z axis, a 2-DOF universal joint allows
rotation about the x and v axes. If the joint also allows longitudinal z axis rotation,
it is a 3-DOF ball-and-socket joint. Single-axis range specification is inadequate for
such joints.

A more natural specification, sometimes called a joint sinus cone, has been used
in biomechanics, simulation, and computer graphics. Here the range of motion is de­
scribed as an irregular cone, defined by a cyclical sequence of points on the sphere
that represents free universal movement. Wilhelms and Van Gelder [137] refer to
such limits as reach cones. They describe a new method for specifying, recognizing
inclusion in, and intersecting reach cones. We have used their techniques for speci­
fying and enforcing joint limits in inverse kinematics (see Section 3.5.1).

C.l Defining Reach Cones

& joint is an articulation between a parent segment and child segment of a tree struc­
tured articulated body. The end of the segment closest to the root of the tree is called
proximal and the other end is called distal. The parent segment is said to be proximal
to the joint and the child segment is said to be distal. When not otherwise qualified,
the term segment should be understood to mean the segment distal to the joint under
discussion, i.e., the child segment. Each segment's longitudinal axis is considered to

116 C Spherical Joint Limits with Reach Cones

be a (bounded) straight line segment originating at the joint with its parent segment.
Henceforth, we refer to the segment's longitudinal axis as the longitudinal segment
axis or as the longitudinal axis.

Formally, a cone is a set of rays starting at the origin. These rays can be defined
by set of points on a sphere centered at the origin. Without any joint limit, the distal
end of the segment might be anywhere on this sphere. With joint limits, the set of
points that can actually be occupied by the distal end represents, or defines, the sinus
or reach cone. Alternatively, the intersection of the sinus cone with this sphere de­
fines the set of points that can be occupied by the distal end of the segment. Spherical
joint limits are specified as a reach cone inscribed on a sphere of radius one, centered
at the joint, together with limits on rotation about the longitudinal axis, that may vary
throughout the reach cone. The reach cone is specified by a spherical polygon, called
the reach cone polygon. The vertices of this spherical polygon are a series of bound­
ary points on this unit sphere, and great-circle arcs on the sphere form its edges.
Points inside or on the reach-cone polygon are considered to be within the reach
cone. Reach cones are defined in the default coordinate frame of the segment distal
to the joint. They do not move about with state rotations of this segment. Detection of
allowable positions in the reach cone is done by testing whether the longitudinal seg­
ment axis intersects the unit sphere inside or outside the reach cone polygon. At each
vertex, limits on rotation about the longitudinal segment axis (also called twist) may
be specified by maximum and minimum angles. Limits on the twist at any position
in the reach cone are defined by an interpolant of these values. This capability is im­
portant because it has been found that the range of motion for longitudinal rotations
is a function of the direction of the longitudinal axis [134].

Reach Cone /
Boundary / /

Visible Point / /

Segment \ \
Inside \ V ^
the Reach Cone ^ \ \

//
/ /

/ /
/ /

i / 1

\
\

X
X

Unlimited Reach
v Sphere

Coordinate System
Origin (Joint)

Segment
^^ Outside

^V^""^^ the Reach Cone

Fig. C.l. A reach cone polygon with five boundary points and a visible point.

It is mandatory for the reach cone polygon to have a visible point, that is, a point
that can be "seen" by all of the boundary points in the sense that a great-circle arc
(or line segment) joining the boundary point with the visible point lies entirely inside
the reach cone (see Fig. C.l).

C.2 Detecting Reach Cone Inclusion 117

C.2 Detecting Reach Cone Inclusion

Suppose a reach cone polygon has been defined with origin O, visible point V, and
boundary points P; for / = 0 , . . . , n - 1. The points are treated as 3D vectors from the
origin, and arithmetic on indexes is understood to be modulo n.

Observe that for each /, the four points (O, V, P/, P/+i) define a tetrahedron. The
order of the points imparts an orientation to the tetrahedron. These n tetrahedra also
generate the reach cone and so can be used as an alternative representation. The
volume of an oriented tetrahedron with one point at the origin is given by the triple
scalar product expression as

vo\(0,a,b,c) = - axb-c . (C.l)
6

The visible point is properly positioned with respect to the boundary points if and
only if each of the n oriented tetrahedra has positive volume; i.e.,

VxPrPi+l>0 for 0 < / < « - l . (C.2)

We consider the problem of deciding whether a specified vector L is in the reach
cone. The vector L is the vector along the segment whose inclusion is being tested. L
is in the reach cone if and only if L passes through one of the n tetrahedra that define
the reach cone. Also, L passes through the tetrahedron (O, V, Pi, P;+i) if and only if
each of the three oriented tetrahedra, (O, V, Ph L), (O, Ph Pi+\, L), and (O, Pi+U V, L)
has nonnegative volume, using Equation (C.l).

Fig. C.2. A reach cone with five boundary points. Slice planes 5/ and Si+\ and the boundary
plane defined by 0, Ph Pi+{ enclose the longitudinal segment axis vector L.

118 C Spherical Joint Limits with Reach Cones

Another way to view this is to consider the plane defined by O, V, Pt, which has
a normal vector (not necessarily unit length) V x Pt. If L is on the same side of the
plane as this normal vector points, then V x Pt • L = 0. The plane defined by 0, V, Pi
is called a radial slice plane and is denoted by 5/ (see Fig. C.2). Similarly, for L to
pass through the tetrahedron (0, V, Pi9 Pi+\) it is necessary that V x P;+i • L = 0 and
Pi x Pi+] - L = 0. Note that the cross products depend on the boundary points and
visible point, but not on L, so they can be computed just once when the reach cone
is specified:

Si = VxPi9

Bi = Pi x PM . (C.3)

The algorithm to decide whether L is in the reach cone is summarized in Algo­
rithm C.l.

Require: Given a reach cone with origin 0, visible point V, and boundary
points Pi for / = 0 , . . . , n - 1. The segment to be tested for inclusion
is given as a vector L.

1 begin
2 Find the / such that pt = Si • L > 0 and pi+\ = Si+\ • L < 0. There is

exactly one such i because the radial slices (as half planes) partition the
sphere. We start with the slice in which the axis was located previously
and search for the required /. In the worst case, this step takes n
dot-product operations, since the cross products are stored. We can speed
this up by doing a binary search on the radial slice planes.

3 If v/ = Bi • L > 0, then L is in the reach cone; otherwise, it is not.
4 end

Algorithm C.l: Reach cone inclusion testing algorithm.

C.3 Calculating a Boundary Position

When the segment moves from a valid position in reach cone, to a position outside
the reach cone it has to be restricted to a boundary position in order to enforce the
joint limits. Hence we need to calculate this boundary position where the segment
exits the reach cone. Such a boundary position can be calculated if we assume that
the segment moves directly from the current valid position to the new invalid position
in a straight-line path.

Let the old position be LQ and the new position be L. The exit point will be found
on the straight line joining LQ and L. The line will be tested against intersection with

C.5 Cyclic Order of Boundary Points 119

the reach cone boundary planes. The boundary plane Bt is computed using Equa­
tion (C.3). The line containing L0 and L is defined as

L(t) = Lo + KL-LQ). (C.4)

The value of t where this line intersects the boundary plane Bt is given by

If 0 < t < 1, an intersection has occurred. Further, we need to check that the
intersection point lies between the slice planes Si and 5/+i, where slice plane 5/ is
defined as

Si = ViXPi+l . (C.6)

C.4 Twist Limits

For a ball-and-socket joint the limits of rotation about the longitudinal depends on
the direction of the segment. For example, in the case of the human shoulder it has
been found that the limits of rotation of the upper arm vary considerably between
94 degrees and 157 degrees depending on the arm orientation. Therefore,the longi­
tudinal rotation limits are specified for each boundary point and visible point. These
values are then interpolated to find the twist limits at any valid position inside the
reach cone.

Given the minimum and maximum twist rotation limits at each of the reach cone
points including the visible point, the limits at any segment orientation L can be
computed as follows. Find i such that pt = Si • LO , pi+\ = 5/+i • L < 0, and
v; = Bi - L > 0, where Si and Bt are computed using Equation (C.3). Now we
define an averaging factor s as s = pi + pt+\ + vi and weights of individual points
of the spherical polygonal in which segment L lies as w£- = pi/s , w£- = Pi+\/s9 and
wv = vi/s. The limits at any segment L are then computed as

Omin(L) = Wi6min(Pi) + Wi+iOminiPi+i) + Wv6min(V) ,

0max(L) = Wi6max(Pi) + Wi+\0max(Pi+]) + wv6max(V). (C.7)

C.5 Cyclic Order of Boundary Points

Reach cones must be defined such that the boundary points are in counterclockwise
order when viewed from the outside and above the visible point. This property is
used in inclusion testing, computation of boundary position, and twist limits at any
intermediate position inside the reach cone. The user can take care of the order of the
points while specifying them interactively. It is also possible to compute the order
automatically. The visible point is of great help in finding out automatic order. By
the definition of visible point, it is a point that can be seen by all the points directly.

120 C Spherical Joint Limits with Reach Cones

Unlimited
Reach Sphere

i i Visible Point

Projected Points

Tangent Plane

Negative
Visible Point

\ H > ' V UA
Reach Cone
Boundary Points
on the Sphere

Fig. C.3. The stereographic projection provides an invertible mapping between the entire
sphere (except for one point) and the tangent plane.

Define a plane to the sphere at visible point and project the boundary points on
to this plane through the negative of visible point (see Fig. C.3). Now the order of
the points in the reach cone is the same as that on the plane. Order of the points
can be found by computing the angle each of the points make with a reference line
passing through the visible point. The angles thus obtained are sorted to compute the
automatic order of boundary points.

C.6 Interactively Creating the Reach Cone

Boundary points for a reach cone can be defined interactively or from a file. We
have created a GUI in which points are added and can be repositioned. The GUI
designed has the functionality to add, delete, and specify the order of the points to
create a reach cone. User is provided with the facility to compute the visible point
automatically by simply finding the resultant vector of all the normalized boundary
point vectors. The user may reposition the visible point if the automatically computed
point is not meeting the necessary condition for the location of the visible point. For
some joints like the wrist joint in humans, the reach cone can be approximated by
an ellipse. Detailed description of the interface use and implementation can be found
in [70]. Reach cones created for the Hugo mesh are shown in Fig. C.4.

Fi*». (.4. Reaeh COIK'S loi" l l i i i iu 's arnr The reach cone a! (he elbow allows on l \ I der ive ol '

I icedoni. I he one a I I he w risi |oini allow s 2. ami the one a I I he shoulder |oini allow s 3 decrees

ol lreedom.

References

1. A. Adamson and V. Jenson. Shrek. DreamWorks Animation SKG, 2001.
2. A. Agarwala. SnakeToonz: A semi-automatic approach to creating eel animation from

video. In Proceedings of the 2nd International Symposium on Non-Photorealistic Ani­
mation and Rendering. ACM Press, 2002.

3. A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz. Keyframe-based tracking
for rotoscoping and animation. ACM Transactions on Graphics, 23(3):584-591, 2004.

4. M. Agrawala, D. Zorin, and T. Munzner. Artistic multiprojection rendering. In Pro­
ceedings of the Eurographics Workshop on Rendering Techniques 2000, pages 125-136,
2000.

5. J. Amat, A. Casals, and M. Frigola. Stereoscopic system for human body tracking in
natural scenes. In Proceedings oflCCV Workshop on Modeling People, Sept. 1999.

6. D. Arijon. Grammar of the Film Language. Communication Arts books, Hastings
House, New York, 1976.

7. O. Arikan and D. A. Forsyth. Interactive motion generation from examples. In SIG-
GRAPH '02: Proceedings of the 29th Annual Conference on Computer Graphics and
Interactive Techniques, pages 483-490. ACM Press, 2002.

8. O. Arikan, D. A. Forsyth, and J. F. O'Brien. Motion synthesis from annotations. ACM
Transactions on Graphics, 22(3):402^08, 2003.

9. K. Asbury and L. Cook. Spirit: Stallion of the Cimarron. DreamWorks SKG, 2002.
10. S. Avidan and A. Shashua. Threading fundamental matrices. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 23(l):73-77, Jan. 2001.
11. R. Azuma. Tracking requirements for augmented reality. Communications of the ACM,

36(7):50-51, July 1993.
12. N. I. Badler, K. H. Manoochehri, and G. Walters. Articulated figure positioning by mul­

tiple constraints. IEEE Computer Graphics and Applications, 7(6):28-38, June 1987.
13. P. Baerlocher. Inverse kinematics techniques for the interactive posture control of artic­

ulated figures. PhD thesis, EPFL, 2001.
14. P. Beardsley, A. Zisserman, and D. Murray. Sequential updating of projective and affine

structure from motion. International Jounral of Computer Vision, 23:235-259, 1997.
15. B. Bird. The Incredibles. Pixar Animation Studios and Walt Disney Pictures, 2004.
16. A. Blake and M. Isard. Active Contours: The Application of Techniques from Graphics,

Vision, Control Theory, and Statistics to Visual Tracking of Shapes in Motion. Springer-
Verlag, New York, 1999.

124 References

17. L. Boissieux. Hugo (3D mesh model). Eurographics 2004 mascot, INRIA Rhone-Alpes,
2004.

18. Boujou. 2d3Ltd. 2002. http://www.2d3.com.
19. M. Brand and A. Hertzmann. Style Machines. In SIGGRAPH '00: Proceedings of

the 27th Annual Conference on Computer Graphics and Interactive Techniques, pages
183-192. ACM Press/Addison-Wesley Publishing Co., 2000.

20. C. Bregler. Learning and recognizing human dynamics in video sequences. In CVPR
'97: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society, 1997.

21. C. Bregler, M. Covell, and M. Slaney. Video Rewrite: Driving visual speech with audio.
In SIGGRAPH '97: Proceedings of the 24th Annual Conference on Computer Graph­
ics and Interactive Techniques, pages 353-360. ACM Press/Addison-Wesley Publishing
Co., 1997.

22. C. Bregler, L. Loeb, E. Chuang, and H. Deshpande. Turning to the masters: Motion
capturing cartoons. In SIGGRAPH '02: Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, pages 399^-07. ACM Press, 2002.

23. C. Bregler and J. Malik. Tracking people with twists and exponential maps. In Pro­
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE
Computer Society, 1998.

24. S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popovic. Interactive skeleton-driven
dynamic deformations. ACM Transactions on Graphics, 21(3):586-593, July 2002.

25. P. Chaudhuri, P. Kalra, and S. Banerjee. A system for view-dependent animation. Com­
puter Graphics Forum, 23(3):411-420, 2004.

26. J. J. Cherlin, F. Samavati, M. C. Sousa, and J. A. Jorge. Sketch-based modeling with
few strokes. In 21st Spring Conference on Computer Graphics, 2005.

27. C. Christensen and S. Corneliussen. Visualization of human motion using model-based
vision. Technical report, Laboratory of Image Analysis, Aalborg University, Denmark,
Jan. 1997.

28. J. M. Cohen, J. F. Hughes, and R. C. Zeleznik. Harold: A world made of drawings. In
Proceedings of the 1st International Symposium on Non-Photorealistic Animation and
Rendering, pages 83-90. ACM Press, 2000.

29. P. Coleman and K. Singh. Ryan: Rendering your animation nonlinearly projected. In
Proceedings of the 3rd International Symposium on Non-Photorealistic Animation and
Rendering, pages 129-156. ACM Press, 2004.

30. J. Collomosse, D. Rowntree, and P. Hall. Cartoon-style rendering of motion from video.
In Proceedings of Vision, Video and Graphics, pages 117-124, July 2003.

31. D. Cooper. 2D/3D hybrid character animation on spirit. In SIGGRAPH 2002: Sketches
and Applications, 2002.

32. K. Cornells, M. Pollefeys, M. Vergauwen, F. Verbiest, and L. V. Gool. Tracking based
structure and motion recovery for augmented video productions. In Proceedings of the
ACM Symposium on Virtual Reality and Software Technology (VRST) 2001, pages 17-
24,2001.

33. D. Cornish, A. Rowan, and D. Luebke. View-dependent particles for interactive non-
photorealistic rendering. In Proceedings of Graphics Interface 2001, pages 151-158,
June 2001.

34. E. Cosatto and P. Graf. Photo-realistic talking heads from image samples. IEEE Trans­
action on Multimedia, 2(3): 152-163, 2000.

35. E. Darnell and T. McGrath. Madagascar. DreamWorks Animation SKG, 2005.

References 125

36. J. Davis, M. Agrawala, E. Chuang, Z. Popovic, and D. Salesin. A sketching interface for
articulated figure animation. In Proceedings of ACM SIGGRAPH/Eurographics Sympo­
sium on Computer Animation, pages 320-328. Eurographics Association, 2003.

37. P. Debevec, G. Borshukov, and Y. Yu. Efficient view-dependent image-based rendering
with projective texture-mapping. In Proceedings of the 9th Eurographics Rendering
Workshop, June 1998.

38. D. DeCarlo and A. Santella. Stylization and abstraction of photographs. In SIGGRAPH
'02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive
Techniques, pages 769-776. ACM Press, 2002.

39. J. Deutscher, B. North, B. Bascle, and A. Blake. Tracking through singularities and
discontinuities by random sampling. In Proceedings of International Conference on
Computer Vision 1999, pages 1144-1149, 1999.

40. A. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or open image
sequences. In Proceedings of European Conference on Computer Vision, pages 311-
326, 1998.

41. A. Fitzgibbon and A. Zisserman. Automatic camera tracking. In M. Shah and R. Kumar,
editors, Video Registration, pages 18-35. Kluwer Academic, 2003.

42. J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling: Knowledge, reasoning and
planning for intelligent characters. In SIGGRAPH '99: Proceedings of the 26th An­
nual Conference on Computer Graphics and Interactive Techniques, pages 29-38. ACM
Press/Addison-Wesley Publishing Co., 1999.

43. A. S. Glassner. Cubism and cameras: Free-form optics for computer graphics. Technical
Report (MSR-TR-2000-05), Jan. 2000.

44. M. Gleicher and N. Ferrier. Evaluating video-based motion capture. In Proceedings of
the Computer Animation, pages 75-80. IEEE Computer Society, 2002.

45. M. Gleicher and A. Witkin. Through-the-lens camera control. In SIGGRAPH '92: Pro­
ceedings of the 19th Annual Conference on Computer Graphics and Interactive Tech­
niques, pages 331-340. ACM Press, 1992.

46. O. Goemans and M. Overmars. Automatic generation of camera motion to track a mov­
ing guide. Technical Report, Institute of Information and Computer Sciences, University
of Utrecht, July 2004.

47. G. H. Golub and C. F. V. Loan. Matrix Computations, 3rd edition. John Hopkins Uni­
versity Press, Baltimore, 1996.

48. F. S. Grassia. Practical parameterization of rotations using the exponential map. Journal
of Graphics Tools, 3(3):29-48, 1998.

49. K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic. Style-based inverse kinemat­
ics. ACM Transactions on Graphics, 23(3):522-531, 2004.

50. Y. Guo, G. Xu, and S. Tsuji. Tracking human body motion based on a stick-figure model.
Journal of Visual Communication and Image Representation, 5:1-9, 1994.

51. A. Haro and I. Essa. Learning video processing by example. In Proceedings of the 16th
International Conference on Pattern Recognition, volume 1, pages 487-491, 2002.

52. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

53. J. Hays and I. Essa. Image and video based painterly animation. In Proceedings of the
3rd International Symposium on Non-Photorealistic Animation and Rendering, pages
113-120. ACM Press, 2004.

54. L. He, M. F. Cohen, and D. H. Salesin. The virtual cinematographer: A paradigm for
automatic real-time camera control and directing. In SIGGRAPH '96: Proceedings of
the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pages
217-224. ACM Press, 1996.

126 References

55. R. Hecker and K. Perlin. Controlling 3D objects by sketching 2D views. In SPIE -
Sensor Fusion V, volume 1828, pages 46-48, Nov. 1992.

56. A. Hertzmann. Painterly rendering with curved brush strokes of multiple sizes. In
SIGGRAPH '98: Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, pages 453^60. ACM Press, 1998.

57. A. Hertzmann. Fast paint texture. In Proceedings of the 2nd International Symposium
on Non-Photorealistic Animation and Rendering, pages 91-96. ACM Press, 2002.

58. A. Hertzmann, N. Oliver, B. Curless, and D. Salesin. Image analogies. In SIGGRAPH
'01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, pages 327-340. ACM Press, 2001.

59. A. Hertzmann and K. Perlin. Painterly rendering for video and interaction. In Proceed­
ings of the 1st International Symposium on Non-Photorealistic Animation and Render­
ing, pages 7-12. ACM Press, 2000.

60. D. C. Hogg. Model-based vision: A program to see a walking person. Image and Vision
Computing, l(l):5-20, 1983.

61. D. C. Hogg. Interpreting images of a known moving object. PhD thesis, University of
Sussex, U.K., 1984.

62. H. Hoppe. View-dependent refinement of progressive meshes. In SIGGRAPH '97: Pro­
ceedings of the 24th Annual Conference on Computer Graphics and Interactive Tech­
niques, pages 189-198. ACM Press/Addison-Wesley Publishing Co., 1997.

63. E. Hsu, K. Pulli, and J. Popovic. Style translation for human motion. In SIGGRAPH
'05: Proceedings of the 32rd Annual Conference on Computer Graphics and Interactive
Techniques, 2005.

64. W. M. Hsu, J. F. Hughes, and H. Kaufman. Direct manipulation of free-form defor­
mations. In SIGGRAPH '92: Proceedings of the 19th Annual Conference on Computer
Graphics and Interactive Techniques, pages 177-184. ACM Press, 1992.

65. T. Igarashi and J. F. Hughes. Smooth meshes for sketch-based freeform modeling. In
SI3D '03: Proceedings of the 2003 Symposium on Interactive 3D Graphics, pages 139—
142. ACM Press, 2003.

66. T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface for 3D freeform
design. In SIGGRAPH '99: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, pages 409-416. ACM Press/Addison-Wesley Pub­
lishing Co., 1999.

67. T. Igarashi, T. Moscovich, and J. F. Hughes. Spatial keyframing for performance-driven
animation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 107-115. ACM Press, 2005.

68. M. Isard and A. Blake. CONDENSATION — conditional density propagation for visual
tracking. International Journal of Computer Vision, 29(l):5-28, 1998.

69. Y. Iwai, K. Ogaki, and M. Yachida. Posture estimation using structure and motion mod­
els. In Proceedings of the International Conference on Computer Vision, pages 214-219,
1999.

70. A. Jindal. Interactive tools for IK, deformation and tracking. Master's thesis, Depart­
ment of Computer Science and Engineering, Indian Institute of Technology Delhi, 2004.

71. N. Jojic, J. Gu, H. C. Shen, and T. S. Huang. 3-D reconstruction of multipart self-
occluding objects. In ACCV '98: Proceedings of the Third Asian Conference on Com­
puter Vision-Volume II, pages 455^4-62. Springer-Verlag, 1998.

72. I. Kakadiaris and D. Metaxas. Vision-based animation of digital humans. In CA '98:
Proceedings of the Computer Animation, page 144. IEEE Computer Society, 1998.

73. R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME-Journal of Basic Engineering, 82(Series D):35-45, 1960.

References 127

74. R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowalski, J. C. Lee, P. L. Davidson,
M. Webb, J. F. Hughes, and A. Finkelstein. WYSIWYG NPR: Drawing strokes directly
on 3D models. ACM Transactions on Graphics, 21(3):755-762, July 2002.

75. Y. Kameda, M. Minoh, and K. Ikeda. Three dimensional pose estimation of an artic­
ulated object from its silhouette image. In Proceedings of the Asian Conference on
Computer Vision, 1993.

76. R. J. Kate, P. Kalra, and S. Banerjee. Towards an automatic approach for view-dependent
geometry. International Journal of Image and Graphics (IJIG), 2(3):413-423, 2002.

77. L. Kavan and J. Zara. Real-time skin deformation with bones blending. WSCG Short
Papers proceedings, 2003.

78. Y. Kho and M. Garland. Sketching mesh deformations. In Proceedings of the 2005
Symposium on Interactive 3D Graphics and Games, pages 147-154. ACM Press, 2005.

79. A. W Klein, P.-P J. Sloan, A. Finkelstein, and M. F. Cohen. Stylized video cubes. In
Proceedings of the ACM SIGGRAPH/Euro graphics Symposium on Computer Animation,
pages 15-22. ACM Press, 2002.

80. K. G. Kobayashi and K. Ootsubo. t-FFD: free-form deformation by using triangular
mesh. In Proceedings of the 8th ACM Symposium on Solid modeling and applications,
pages 226-234. ACM Press, 2003.

81. L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In SIGGRAPH '02: Proceedings
of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pages
473^82. ACM Press, 2002.

82. M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev, R. Barzel, L. S. Holden, and
J. F. Hughes. Art-based rendering of fur, grass, and trees. In SIGGRAPH '99: Proceed­
ings of the 26th Annual Conference on Computer Graphics and Interactive Techniques,
pages 433^38. ACM Press/Addison-Wesley Publishing Co., 1999.

83. J. Lander. Skin them bones: Game programming for the web generation. Game Devel­
oper Magazine, pages 11-16, May 1998.

84. J. Lander. Over my dead, polygonal body. Game Developer Magazine, pages 17-22,
Oct. 1999.

85. C. Landreth. Ryan. Copper Heart Entertainment Inc. and National Film Board of
Canada, 2004.

86. J. Lasseter. Principles of traditional animation applied to 3D computer animation. In
SIGGRAPH '87: Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, pages 35-44. ACM Press, 1987.

87. H. J. Lee and Z. Chen. Determination of 3D human body postures from a single view.
Computer Vision, Graphics and Image Processing, 30(2): 148-168, May 1985.

88. J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive control of
avatars animated with human motion data. In SIGGRAPH '02: Proceedings of the 29th
Annual Conference on Computer Graphics and Interactive Techniques, pages 491-500.
ACM Press, 2002.

89. K. H. Lee, M. G. Choi, and J. Lee. Motion patches: Building blocks for virtual environ­
ments annotated with motion data. In SIGGRAPH '06: Proceedings of the 33rd Annual
Conference on Computer Graphics and Interactive Techniques, 2006.

90. J. P. Lewis, M. Cordner, and N. Fong. Pose space deformation: A unified approach to
shape interpolation and skeleton-driven deformation. In SIGGRAPH '00: Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pages
165-172. ACM Press/Addison-Wesley Publishing Co., 2000.

91. Y. Li, M. Gleicher, Y.-Q. Xu, and H.-Y Shum. Stylizing motion with drawings. In
Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 309-319. Eurographics Association, 2003.

128 References

92. Y. Li, T. Wang, and H.-Y. Shum. Motion texture: A two-level statistical model for char­
acter motion synthesis. In SIGGRAPH '02: Proceedings of the 29th Annual Conference
on Computer Graphics and Interactive Techniques, pages 465^472. ACM Press, 2002.

93. S. E. Librande. Example-based character drawing. Master's thesis, Massachusetts In­
stitute of Technology, Master of Science in Visual Studies, Sept. 1992.

94. P. Lindstrom and V. Pascucci. Terrain simplification simplified: A general framework
for view-dependent out-of-core visualization. IEEE Transactions on Visualization and
Computer Graphics, 8(3):239-254, 2002.

95. P. Litwinowicz. Processing images and video for an impressionist effect. In SIGGRAPH
'97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques, pages 407^414. ACM Press/Addison-Wesley Publishing Co., 1997.

96. P. C. Litwinowicz. Inkwell: A 2 -D animation system. In SIGGRAPH '91: Proceedings
of the 18th Annual Conference on Computer Graphics and Interactive Techniques, pages
113-122. ACM Press, 1991.

97. C. Mao, S. F. Qin, and D. K. Wright. A sketch-based gesture interface for rough 3D
stick figure animation. In Proceedings of the Eurographics Workshop on Sketch Based
Interfaces and Modeling, pages 175-183. Eurographics Association, 2005.

98. L. Markosian, J. Cohen, T. Crulli, and J. Hughes. Skin: a constructive approach to model­
ing free-form shapes. In SIGGRAPH '99: Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques, pages 393-400. ACM Press/Addison-
Wesley Publishing Co., 1999.

99. D. Martin, S. Garcia, and J. C. Torres. Observer-dependent deformations in illustration.
In Proceedings of the 1st International Symposium on Non-Photorealistic Animation
and Rendering, pages 75-82. ACM Press, 2000.

100. B. J. Meier. Painterly rendering for animation. In SIGGRAPH '96: Proceedings of
the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pages
477-^84. ACM Press, 1996.

101. T. B. Moeslund and E. Granum. 3D human pose estimation using 2D-data and an al­
ternative phase space representation. In Proceedings of Workshop on Human Modeling,
Analysis and Synthesis at CVPR, June 2000.

102. T. B. Moeslund and E. Granum. A survey of computer vision-based human motion
capture. Computer Vision and Image Understanding, 81(3):231—268, 2001.

103. E. Muybridge. The Human Figure in Motion. Dover Publications, New York, 1955.
104. T. Ngo, D. Cutrell, J. Dana, B. Donald, L. Loeb, and S. Zhu. Accessible animation

and customizable graphics via simplicial configuration modeling. In SIGGRAPH '00:
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Tech­
niques, pages 403-410. ACM Press/Addison-Wesley Publishing Co., 2000.

105. M. Owen and P. Willis. Modelling and interpolating cartoon characters. In Proceedings
of Computer Animation '94, pages 148-155, May 1994.

106. F. J. Perales and J. Torres. A system for human motion matching between synthetic and
real images based on a biomechanic graphical model. In Proceeding of Workshop on
Motion of Non-Rigid and Articulated Objects, pages 83-88, Austin, Texas, 1994.

107. B.-T. Phong. Illumination for computer generated pictures. Communications of the
ACM, 18(6):311-317, June 1975.

108. R. Plankers, P. Fua, and N. D. Apuzzo. Automated body modeling from video sequences.
In Proceedings oflCCV Workshop on Modeling People, Sept. 1999.

109. P. Rademacher. View-dependent geometry. In SIGGRAPH '99: Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques, pages A39-AA6.
ACM Press/Addison-Wesley Publishing Co., 1999.

References 129

110. J. Rittscher and A. Blake. Classification of human body motion. In Proceedings of the
International Conference on Computer Vision, pages 634-639, 1999.

111. K. Rohr. Recognition of human movements based on explicit motion models. In Motion-
Based Recognition, pages 171-198. Kluwer Academic Press, 1997.

112. C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidimensional mo­
tion interpolation. IEEE Computer Graphics and Applications, 18(5):32^-0, 1998.

113. W. R. Sabiston. Extracting 3D Motion from Hand-Drawn Animated Figures. Master's
thesis, Massachusetts Institute of Technology, Master of Science in Visual Studies, June
1991.

114. H. Sakaguchi and M. Sakakibara. Final Fantasy: The Spirits Within. Square Pictures,
2001.

115. D. Schaub. The Polar Express Diary: Part 2 — Performance Capture & the MoCap/Anim
Process. VFX World, Feb. 2005. http://www.vfxworld.com/?sa=adv &code=319b255d
&atype=articles &id=2390.

116. A. Schbdl and I. A. Essa. Controlled animation of video sprites. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 121-127.
ACM Press, 2002.

117. H. Sidenbladh, F. D. la Torre, and M. J. Black. A framework for modeling the appear­
ance of 3D articulated figures. In Proceedings of the 4th International Conference on
Automatic Face and Gesture Recognition, pages 368-375, Mar. 2000.

118. G. Simon, A. Fitzgibbon, and A. Zisserman. Markerless tracking using planar structures
in the scene. In Proceedings of International Symposium on Augmented Reality, pages
120-128, Oct. 2000.

119. K. Singh. A fresh perspective. In Proceedings of Graphics Interface 2002, pages 17-24,
2002.

120. J. Starck, G. Miller, and A. Hilton. Video-based character animation. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 49-58.
ACM Press, 2005.

121. R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popovic. Mesh-based inverse kinematics.
ACM Transactions Graphics, 24(3):488-495, 2005.

122. D. Sykora, J. Burianek, and J. Zara. Sketching cartoons by example. In Proceedings
of the Eurographics Workshop on Sketch Based Interfaces and Modeling, pages 27-33.
Eurographics Association, 2005.

123. C. J. Taylor. Reconstruction of articulated objects from point correspondences in a single
uncalibrated image. Computer Vision and Image Understanding, 80(3):349-363, 2000.

124. F. Thomas and O. Johnson. Disney Animation: The Illusion of Life. Abbeville Press,
New York, 1984.

125. M. Thorne, D. Burke, and M. van de Panne. Motion doodles: An interface for sketching
character motion. ACM Transactions on Graphics, 23(3):424-^131, 2004.

126. A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization
method. Soviet Math. Dokl, 4:1036-1038, 1963.

127. O. Tolba, J. Dorsey, and L. McMillan. A projective drawing system. In SI3D '01:
Proceedings of the 2001 Symposium on Interactive 3D Graphics, pages 25-34. ACM
Press, 2001.

128. B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustment - a modern
synthesis. In Proceedings of the International Workshop on Vision Algorithms: Theory
and Practice, pages 298-372, 1999.

129. G. Trousdale and K. Wise. Beauty and the Beast. Walt Disney Pictures, 1991.
130. R. Zenka and P. Slavik. New dimension for sketches. In SCCG '03: Proceedings of the

19th Spring Conference on Computer Graphics, pages 157-163. ACM Press, 2003.

130 References

131. L. Wachowski and A. Wachowski. The Matrix. Warner Studios, 1999.
132. J. Wang, Y. Xu, H.-Y. Shum, and M. F. Cohen. Video Tooning. ACM Transactions on

Graphics, 23(3):574-583, 2004.
133. L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum. View-dependent

displacement mapping. ACM Transactions on Graphics, 22(3):334-339, 2003.
134. X. Wang, M. Maurin, F. Mazet, N. D. C. Maia, K. Voinot, J. P. Verriest, and M. Fayet.

Three-dimensional modelling of the motion range of axial rotation of the upper arm.
Journal of Biomechanics, 31:899-908, 1998.

135. G. Welch and E. Foxlin. Motion tracking: No silver bullet, but a respectable arsenal.
IEEE Computer Graphics and Applications, 22(6):24-38, 2002.

136. C. Welman. Inverse kinematics and geometric constraints for articulated figure manip­
ulation. Master's thesis, Simon Fraser University, 1993.

137. J. Wilhelms and A. V. Gelder. Fast and easy reach-cone joint limits. Journal of Graphics
Tools, 6{2):21-A\,200\.

138. H. Winnemoller, S. C. Olsen, and B. Gooch. Real-time video abstraction. In S1GGRAPH
'06: Proceedings of the 33rd Annual Conference on Computer Graphics and Interactive
Techniques, 2006.

139. C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time tracking
of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(7):780-785, 1997.

140. C. R. Wren and A. P. Pentland. Dynaman: Recursive modeling of human motion. In
Vismod, 1997.

141. M. Yamamoto and K. Koshikawa. Human motion analysis based on a robot arm model.
In Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR) 1991, pages
664-665. IEEE, June 1991.

142. Y Yang, J. X. Chen, and M. Beheshti. Nonlinear perspective projections and magic
lenses: 3D view deformation. IEEE Computer Graphics and Applications, 25(l):76-84,
Jan. 2005.

143. R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. SKETCH: An interface for sketching
3D scenes. In SIGGRAPH '96: Proceedings of the 23 rd Annual Conference on Computer
Graphics and Interactive Techniques, pages 163-170. ACM Press, 1996.

144. J. Y. Zheng and S. Suezaki. A model based approach in extracting and generating hu­
man motion. In Proceedings of 14th International Conference on Pattern Recognition,
volume 2, pages 1201-1205, Aug. 1998.

145. J. Y. Zheng and D. Takagi. Interactive human motion acquisition from video sequences.
In Proceedings of Computer Graphics International, pages 209-217, 2000.

Index

affine camera 40,107-109
algebraic error 109
animate 1
animatic 3
animation 1,3,8

character animation 1
computer animation 1,4
nonphotorealistic 83
stylized 83
traditional animation 1

animation pipeline 3
animation synthesis 85
axis planes 107

Ballet of the Hand animation 54
base joint 41
base model 16
blended skinning 43
body camera 95
bones blending 43
Boujou 66

camera center 40,106
camera path 20,21,25,79
camera path augmentation 78
camera path transplantation 77
camera tracking 63,66

offline 64
online 64

camera-character relationship 6,9
cartoon capture 61
eels 1,3
character pose 18
character tracking 59

compositing view-dependent animations
88

CONDENSATION 60
contour 67
contour tracking 62,68
control lattice 47
crowd animation 92
cubist paintings 94

deformed mesh model 36,50
direct free-form deformation 47
distal segment 115
distance of viewpoint 25

end-effector 41
envelope 18
exponential map 42, 111, 112,114
exposure sheet 3
extremes; see key frames

forward kinematics 41
free viewpoint video 63
free-form deformation 47

gimbal lock 111,114
global camera 92,93
Gold Standard Algorithm 40,110

Harold 32
hierarchical extended nonlinear transforma­

tions 17
hinge joints 115
Hugo 4
Hugo's Antics animation 53

132 Index

Hugo's High Jump animation 4,20,
stylized version 97

human motion capture 59

image plane 105
in-betweening 3
inverse kinematics 42

joint reach cones 42

Kalman filter 60,67
measurement assimilation 67
prediction 67

key cameras; see key views
key deformation 16
key frames 3
key poses 50
key viewpoint 16
key views 50
kinematic chain 41

lattice 37
layout 5
local camera 92,93
log map 112

mannequin sketch 38,46
master camera 97
matchmoving; see camera tracking
Mexican Wave animation 92,93
model sheet 3
motion doodles 34
motion graphs 85
moving-camera character animation 2,

11
multimodal inputs 57

non-view-dependent animation 11,53
nonlinear projection 14
normalization 109
Normalized Direct Linear Transformation

Algorithm 40,109

observer-dependent deformations 17
Olaf Reloaded animation 38,54
Olaf, the Ogre 54
orthographic camera 39, 107

Pablo Picasso 94
path-mapping function 92

,55 pinhole camera 105,106
pose space deformation 13
posed mesh model 36,46
principal plane 107
principal point 107
principal ray 107
principles of animation

straight ahead action 2
principles of animation 2

anticipation 2
appeal 3
arcs 3
exaggeration 3
follow through 2
overlapping action 2
pose-to-pose action 2
secondary action 3
slow in and out 3
squash and stretch 2
staging 2,4,5, 8
timing 2

projective camera 39,40
proximal segment 115

quaternion 112

r-closest key viewpoints 20,52,72
radial decay function 49
reach cone polygon 116
reach cones 115, 121
regularization 42
rotoscoping 62
runtime of the animation 20
Ryan 14

sampling order; see sampling time
sampling time 18,23
scaled orthographic camera 107
second-order dynamics 67
shape template 67
skeleton 37
SKETCH 31
SmoothTeddy 31
spatial key framing 14
story sketch; see storyboard
storyboard 3,4
style machines 85
stylistic reuse 83
stylized animation 83

Index 133

Teddy 31
time-lapse sketch 5
twist 116,119
twist limits 119

universal joint 115

video-based motion capture; see
vision-based motion capture

view space 18,20
configurations 23
instantaneous 23

view sphere 16,23
view-dependent animation 8
view-dependent character animation; see

view-dependent animation

view-dependent geometry 15
view-dependent lighting and texture 103
view-dependent mesh deformation algorithm

47,48
view-dependent model 16
view-dependent posing algorithm 43,44
view-dependent timing 102
visible point 116
vision-based motion capture 59

initialization 59
pose estimation 59,60
recognition 59
tracking 59

weak perspective camera 108
weighted blending 21,22

Printed in the United States of America

Fig. 1.4. The moving-camera frame.

Fig. 1.5. Path of the camera center across all frames.

Fig. 2.8. The small sphere is the recovered camera position and the line shows the view
direction vector. The larger sphere, centered at the look-at point, gives an idea of the
relative positioning of the recovered camera centers.

Fig. 2.9. The left image shows the path traced on the envelope of the view space.
The right image shows a close-up view of the path. The larger green sphere at the end
of the path shows the position of the (current) camera when this snapshot was captured.

Selected
Key Pose 1

Fig. 3.13. The view space — the smaller blue and red spheres are the key viewpoints.

(a) (b)

Fig. 4.5. (a) feature points tracked by Boujou, (b) camera tracking by Boujou. The
camera path recovered is shown in red.

(a) (b) (c) (d)

Fig. 4.6. Posing the character from a video frame: (a) contours tracked on a frame of
the input video with joints of the 2D skeleton marked in white, (b) corresponding
joints on the 3D skeleton marked in white, (c) 3D skeleton and character's mesh after
posing, (d) final rendered pose of the character.

(a)

(b)

Fig. 4.7. (a) tracked contours and associated 2D skeletons on two key frames,
(b) corresponding posed character viewed through their respective recovered cameras.

Fig. 4.8. The viewpoints, the view directions and the view space.

i .mum mm
(a) (b) (c)

Fig. 4.9. Character poses associated with key views and novel view generation.

Fig. 4.10. The top row shows the camera path. The bottom row shows the corresponding
generated animation frames.

(a) (b)

Fig. 4.13. (a) envelope of the view space constructed using the cameras recovered from
the sketches, (b) transplanted camera path.

I i<j. 4.16. I he top row shows the camera path changing on ! \ in distance. I he b o t t o m

row shows the cor respond ing Licncralcd an ima t i on frames.

Roughly planned camera paths

* \ \ _

Fig. 5.4. Part of the storyboard for the reuse animation example.

-f 4 4 A

View Sphere Change

i A ^r Af
View Sphere 2

Fig. 5.7. Camera 1 (in green) generates the green character, Camera 2 (in red) generates
the red character. Each view sphere generates two character poses in response to the
two cameras.

Fig. 5.8. Frames from the synthesized animation.

(a) (b) (c)

Fig. 5.10. The Mexican Wave Animation.

